
IBM® Developer Kit and Runtime Environment, 
Java™ 2 Technology Edition, Version 1.4.1, Service Refresh 1 

 
 
 
 
 
IBM JVM 
Garbage Collection and Storage 
Allocation techniques 
 
 



Note 
Before using this information and the product it supports, read the information in Appendix A.Notices 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First Edition (November 2003) 
This edition applies to all the platforms that are included in the IBM Developer Kit and Runtime Environment, Java 2 
Technology Edition, Version 1.4.1, Service Refresh 1 and to all subsequent releases and modifications until otherwise 
indicated in new editions. 
© Copyright International Business Machines Corporation 2003. All rights reserved. 
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract 
with IBM Corp 



1 INTRODUCTION ...............................................................................................................................5 
1.1 OBJECT ALLOCATION ....................................................................................................................5 
1.2 REACHABLE OBJECTS ...................................................................................................................5 
1.3 GARBAGE COLLECTION ................................................................................................................6 

1.3.1 Mark Phase .............................................................................................................................6 
1.3.2 Sweep Phase............................................................................................................................7 
1.3.3 Compaction Phase...................................................................................................................7 

2 DATA AREAS .....................................................................................................................................8 
2.1 AN OBJECT ...................................................................................................................................8 
2.2 THE HEAP ...................................................................................................................................10 

2.2.1 Setting the heap size ..............................................................................................................10 
2.3 ALLOC BITS AND MARK BITS .......................................................................................................12 
2.4 THE SYSTEM HEAP .....................................................................................................................13 
2.5 THE FREE LIST............................................................................................................................14 

3 ALLOCATION..................................................................................................................................15 
3.1 HEAP LOCK ALLOCATION ............................................................................................................15 

3.1.1 Hints ......................................................................................................................................16 
3.2 CACHE ALLOCATION ..................................................................................................................17 

4 GARBAGE COLLECTION .............................................................................................................19 
4.1 MARK PHASE ..............................................................................................................................19 

4.1.1 Mark stack overflow ..............................................................................................................20 
4.1.2 Parallel Mark ........................................................................................................................22 
4.1.3 Concurrent Mark...................................................................................................................22 

4.2 SWEEP PHASE .............................................................................................................................24 
4.2.1 Parallel Bitwise Sweep ..........................................................................................................24 

4.3 COMPACTION PHASE...................................................................................................................25 
4.3.1 Compaction Avoidance..........................................................................................................26 
4.3.2 Incremental Compaction .......................................................................................................27 

4.4 REFERENCE OBJECTS ..................................................................................................................30 
4.4.1 JNI weak references ..............................................................................................................30 

4.5 HEAP EXPANSION .......................................................................................................................31 
4.6 HEAP SHRINKAGE .......................................................................................................................32 
4.7 RESETTABLE JVM ......................................................................................................................32 
4.8 VERBOSEGC.................................................................................................................................33 

4.8.1 verbosegc output from a System.gc .......................................................................................33 
4.8.2 verbosegc output from an allocation failure .........................................................................33 
4.8.3 verbosegc for a heap expansion ............................................................................................34 
4.8.4 verbosegc for a heap shrinkage.............................................................................................35 
4.8.5 verbosegc for a compaction...................................................................................................35 
4.8.6 verbosegc for concurrent mark kick-off.................................................................................36 
4.8.7 verbosegc for a concurrent mark System.gc collection .........................................................37 
4.8.8 verbosegc for a concurrent mark AF collection ....................................................................37 
4.8.9 verbosegc for a concurrent mark AF collection with :Xgccon ..............................................38 
4.8.10 verbosegc for a concurrent mark collection .....................................................................38 
4.8.11 verbosegc for a concurrent mark collection with :Xgccon ...............................................39 
4.8.12 verbosegc and resettable ..................................................................................................40 

5 MESSAGES .......................................................................................................................................41 
6 COMMAND LINE PARAMETERS................................................................................................54 
APPENDIX A. NOTICES ...................................................................................................................58 
 



 



1 Introduction 
 
This document describes the functions of the Storage (ST) component from release 1.2.2 
to 1.4.1, Service Refresh 1. 
 
The ST component allocates areas of storage in the heap.  These areas of storage define 
objects, arrays, and classes.  When an area of storage has been allocated, an object 
continues to be live while a reference (pointer) to it exists somewhere in the active state 
of the JVM; thus the object is reachable.  When an object ceases to be referenced from 
the active state, it becomes garbage and can be reclaimed for reuse.  When this 
reclamation occurs, the Garbage Collector must process a possible finalizer and also 
ensure that any monitor that is associated with the object is returned to the pool of 
available monitors (sometimes called the monitor cache).  Not all objects are treated 
equally by the ST component.  Some (ClassClass and Thread) are allocated into special 
regions of the heap (pinned clusters); others (Reference and its derivatives) are treated 
specially during tracing of the heap.  More details on these special cases are given in 
section 4.4 “Reference Objects”. 
 
 
1.1 Object allocation 
 
Object allocation is driven by calls to one of the allocation interfaces; for example,  
stCacheAlloc, stAllocObject, stAllocArray, stAllocClass. These interfaces all allocate a 
given amount of storage from the heap, but have different parameters and semantics.  The 
stCacheAlloc routine is specifically designed to deliver optimal allocation performance 
for small objects. Objects are allocated directly from a thread local allocation buffer that 
the thread has previously allocated from the heap. A new object is allocated from the end 
of this cache without the need to grab the heap lock; therefore, it is very efficient. Objects 
that are allocated through the stAllocObject and stAllocArray interfaces are, if small 
enough (currently 512 bytes), also allocated from the cache.  
 
1.2 Reachable Objects 
 
The active state of the JVM is made up of the set of stacks that represents the threads, the 
static’s that are inside Java classes, and the set of local and global JNI references. All 
functions that are invoked inside the JVM itself cause a frame on the C stack. This 
information is used to find the roots. These roots are then used to find references to other 
objects. This process is repeated until all reachable objects are found. 
 



1.3 Garbage Collection 
 
When the JVM cannot allocate an object from the current heap because of lack of space, 
the first task is to collect all the garbage that is in the heap. This process starts when any 
thread calls stGC either as a result of allocation failure, or by a specific call to 
System.gc(). The first step is to get all the locks that the garbage collection process needs. 
This step ensures that other threads are not suspended while they are holding critical 
locks. All the other threads are then suspended through an execution manager (XM) 
interface, which guarantees to make the suspended state of the thread accessible to the 
calling thread. This state is the top and bottom of the stack and the contents of the 
registers at the suspension point. It represents the state that is required to trace for object 
references. Garbage collection can then begin. It occurs in three phases: 
 Mark 
 Sweep 
 Compaction (optional) 

 

1.3.1 Mark Phase 
 
In the mark phase, all the objects that are referenced from the thread stacks, static’s, 
interned strings, and JNI references are identified. This action creates the root set of 
objects that the JVM references. Each of those objects might, in turn, reference others. 
Therefore, the second part of the process is to scan each object for other references that it 
makes. These two processes together generate a vector that defines live objects. 
 
Each bit in the vector (allocbits) corresponds to an 8-byte section of the heap.  The 
appropriate bit is set when an object is allocated.  When the Garbage Collector traces the 
stacks, it first compares the pointer against the low and high limits of the heap. It then 
ensures that the pointer is pointing to an object that is on an 8-byte boundary (GRAIN) 
and that the appropriate allocbit is set to indicate that the pointer is actually pointing at an 
object. The Garbage Collector now sets a bit in the markbits vector to indicate that the 
object has been referenced. 
   
Finally, the Garbage Collector scans the fields of the object to search for other object 
references that the object makes.  This scan of the objects is done accurately because the 
method pointer that is stored in its first word enables the Garbage Collector to know the 
class of the object. The Garbage Collector therefore has access to a vector of offsets that 
the classloader builds at class linking time (before the creation of the first instance).  The 
offsets vector gives the offset of fields that are in the object that contains object 
references. 
 



1.3.2 Sweep Phase 
 
After the mark phase, the markbits vector contains a bit for every reachable object that is 
in the heap. The markbits vector must be a subset of the allocbits vector. The task of the 
sweep phase is to identify the intersection of these vectors; that is, objects that have been 
allocated but are no longer referenced. 
 
The original technique for this sweep phase was to start a scan at the bottom of the heap, 
and visit each object in turn. The length of each object was held in the word that 
immediately preceded it on the heap. At each object, the appropriate allocbit and markbit 
was tested to locate the garbage. 
 
Now, the bitsweep technique avoids the need to scan the objects that are in the heap and 
therefore avoids the associated overhead cost for paging. In the bitsweep technique, the 
markbits vector is examined directly to look for long sequences of zeros (not marked), 
which probably identify free space. When such a long sequence is found, the length of 
the object that is at the start of the sequence is examined to determine the amount of free 
space that is to be released. 

1.3.3 Compaction Phase 
 
After the garbage has been removed from the heap, the Garbage Collector can compact 
the resulting set of objects to remove the spaces that are between them. Because 
compaction can take a long time, it is avoided if possible. Compaction, therefore, is a rare 
event. Compaction avoidance is explained in more detail later in section “4.3.1 
Compaction Avoidance”.  
 
The process of compaction is complicated because handles are no longer in the JVM. If 
any object is moved, the Garbage Collector must change all the references that exist to it. 
If one of those references was from a stack, and therefore the Garbage Collector is not 
sure that it was an object reference (it might have been a float, for example), the Garbage 
Collector cannot move the object. Such objects that are temporarily fixed in position are 
referred to as dosed in the code and have the dosed bit set in the header word to indicate 
this fact. Similarly, objects can be pinned during some JNI operations. Pinning has the 
same effect, but is permanent until the object is explicitly unpinned by JNI. Objects that 
remain mobile are compacted in two phases by taking advantage of the fact that the mptr 
is known to have the low three bits set to zero. One of these bits can therefore be used to 
denote the fact that it has been swapped. Note that this swapped bit is applied in two 
places: the link field (where it is known as OLINK_IsSwapped), and also the mptr (where 
it is known as GC_FirstSwapped). In both cases, the least significant bit (x01) is being 
set. 
 
At the end of the compaction phase, the threads are restarted through an XM interface. 
 

 



2 Data Areas 
 
2.1 An Object 
 

Size + 
Flags mptr Object dataSize + 
Flags mptr Object data

 
Figure 1. An object 

 
Figure 1 shows the layout of an object on the heap. 
 
•  size + flags 

The size + flags slot is four bytes on 32-bit architecture and eight bytes on 64-bit 
architecture. The main purpose of this slot is to contain the length of the object. 
Because all objects start on an 8-byte boundary, and the size is divisible by 8, the 
bottom three bits are not used for the size, so the Garbage Collector uses them for 
some flags to indicate different states of the object. Also, because the size of objects 
is limited, the top two bits can be used for flags.  (Note that the mptr slot, not the size 
+ flags slot, is grained on an 8-byte boundary.). 

 
The flags that are in the size + flags slot are as follows: 
 

 Bit 1 has several purposes. It is the swapped bit, and is used during 
compaction (see section “4.3 Compaction Phase” for more information). Bit 1 
is also the multipinned bit. It is used to indicate that this object has been 
pinned multiple times. During a garbage collection cycle, the multipinned bit 
is removed and restored to allow the other uses of this multipurpose bit. 

 
  Bit 2 is the dosed bit. The dosed bit is set on if the object is referenced from 

the stack or registers. “Referenced” means that the object cannot be moved in 
this garbage collection cycle because the Garbage Collector cannot fix up the 
reference because it might not be a real reference but an integer that happens 
to have the same value that an object on the heap has. 

 
 



  Bit 3 is the pinned bit. Pinned objects cannot be moved, usually because they 
are referenced from outside the heap. Examples of this are Thread and 
ClassClass objects. 

 
  Bit 31 in 32-bit architecture, or bit 63 in 64-bit architecture, is the flat locked 

contention (flc) bit and is used by the locking (LK) component. 
 

 
  Bit 32 in 32-bit architecture, or bit 64 in 64-bit architecture, is the hashed bit 

and is used to denote an object that has returned its hashed value. This is 
required because the hash value is the address of the object and the Garbage 
Collector needs to maintain this if it moves the object. 

 
•  mptr 

The mptr slot is four bytes on 32-bit architecture and eight bytes on 64-bit 
architecture. The mptr slot is grained on an 8-byte boundary, not the size + flags. The 
mptr has one of two functions:  
 

1. If this is not an array, the mptr points to the method table, from where the 
Garbage Collector can get to the class block. In this way, the Garbage 
Collector can tell of what class an object is an instantiation. The method table 
and class block are allocated by the class loader (CL) component and are not 
in the heap. 

 
2. If this is an array, the mptr contains a count of how many array entries are in 

this object. 
 
 
•  locknflags 

The locknflags slot is four bytes on 32-bit architecture and eight bytes on 64-bit 
architecture, although only the lower four bytes are used. Its main use is to contain 
data for the LK component when locking. It also contains these flags: 

  Bit 2 is the array flag. If this bit is set on, the object is an array and the mptr 
field contains a count of how many elements are in the array. 

  Bit 3 is the hashed and moved bit. If this bit is set on, it indicates that this 
object has been moved after it was hashed, and that the hash value can be 
found in the last slot of the object. 

 
•  Object data 

This is where the object data starts, the layout of which is object dependent. 
 
The size + flags, mptr, and locknflags are sometimes known collectively as the 
header. 
 



heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

2.2 The Heap 
 

 
Figure 2 shows the layout of the heap. The heap 
is a contiguous area of storage that is obtained 
from the operating system at JVM initialization. 
heapbase is the address of the start of the heap 
and heaptop is the address of the end of the heap. 
heaplimit is the address of the top of the 
currently-used part of the heap. heaplimit can 
expand and shrink (see section “4.5 Heap 
Expansion” and section “4.6 Heap Shrinkage”). 
The -Xmx option controls the size from heapbase 
to heaptop. The -Xms option controls the initial 
size from heapbase to heaplimit. If these options 
are not specified they default to the following: 
 

•  Xmx 
 Windows: Half the real storage 

with a minimum of 16 MB and 
a maximum of 2 GB-1. 

 OS/390 and AIX: 64 MB. 
 Linux: Half the real storage 

with a minimum of 16 MB and 
a maximum of 512 MB-1. 

•  Xms 
 Windows, AIX, and Linux: 4 

MB.  
 OS/390: 1 MB 

2.2.1 Setting the heap size 
 
For most applications, the default settings work well. The heap expands until it reaches a 
steady state, then remains in this state, which should give heap occupancy (that is, the 
amount of live data on the heap at any given time) of 70%. At this level, the frequency 
and pause time of garbage collection should be at an acceptable level. 
 
For some applications, the default settings might not give the best results. Here are some 
problems that might occur, and some suggested actions that you can take. Use verbosegc 
to help monitor the heap. 
 
 

•  The frequency of garbage collections is too high until the heap reaches a 
steady state: 

Figure 2. The heap 



Use verbosegc to determine the size of the heap at a steady state, then set -Xms to 
this value. 

•  The heap is fully expanded and the occupancy level is greater than 70%: 
Increase the -Xmx value so that the heap is not more than 70% occupied. 
However, for best performance, ensure that the heap never pages. The maximum 
heap size should if possible be able to be contained in physical memory. 

•  At 70% occupancy, the frequency of GCs is too great: 
Change the setting of -Xminf. The default is 0.3, which tries to maintain 30% free 
space by expanding the heap. A setting of 0.4, for example, increases this free 
space target to 40%, thereby reducing the frequency of garbage collections. 

•  Pause times are too long: 
Try using -Xgcpolicy:optavgpause. It reduces the pause times and makes them 
more consistent as the heap occupancy rises. The cost is a drop in throughput 
which varies with applications, and will be approximately 5%. 

 
Here are some tips that work well: 
 

•  Ensure that the heap never pages (that is, the maximum heap size must be able to 
be contained in physical memory). 

•  Avoid finalizers. You can never be guarantee when a finalizer will run. Often they 
cause problems.  A verbosegc trace shows whether finalizers are being called. If 
you do use finalizers, try to follow these key points: 
 Avoid allocating objects in the finalizer method. 
 Do not use finalizers as a way to free native resources. 
 Avoid calling long or blocking routines from within a finalizer. 

•  Avoid compaction. A verbosegc trace shows whether compaction is occurring. 
Compaction is usually caused by requests for large memory allocations. Analyze 
requests for large memory allocations and avoid them if possible. If, for example, 
the memory allocations are large arrays, try to split them into smaller pieces. 

 



2.3 Alloc bits and mark bits 

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits Markbits

allocmax

allocsize

marksize

marksize

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits Markbits

allocmax

allocsize

marksize

marksize

 
Figure 3. The heap with allocbits and markbits 

 
Figure 3 shows the heap in relation to the allocbits and markbits bit vectors. These two 
bit vectors indicate the state of objects that are on the heap. Because all objects that are 
on the heap start on an 8-byte boundary, both vectors have one bit to represent eight bytes 
of the heap. Therefore, each of these vectors is 

1
64  of the heap size.  

 
When objects are allocated in the heap, a bit is set on in allocbits to indicate the start of 
the object. This bit indicates where allocated objects are, but not whether the object is 
alive. During the mark phase, a bit is set on in markbits to indicate the start of a live 
object. Figure 4 shows two objects on the heap. The allocbit is set on for both objects.  
 



heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits Markbits

allocmax

allocsize

marksize

marksize

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits Markbits

allocmax

allocsize

marksize

marksize

Object 2

Object 1

1

1

1

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits Markbits

allocmax

allocsize

marksize

marksize

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits Markbits

allocmax

allocsize

marksize

marksize

Object 2

Object 1

1

1

1

 
Figure 4. Some objects in the heap 

During the mark phase, Object 2 was found to be referenced, but Object 1 was not. 
Therefore, a markbit is set on for Object 2. Object 1 will be collected during the sweep 
phase. 
 
2.4 The System Heap 
 

Heap_extent_info

Heap_extent_info

Heap_extent_info

base

base

base

limit

limit

limit

S(system_heap_this_extent)

Heap_extent_infoHeap_extent_info

Heap_extent_infoHeap_extent_info

Heap_extent_infoHeap_extent_info

base

base

base

limit

limit

limit

S(system_heap_this_extent)

 
Figure 5. The system heap 

 
The system heap contains only objects that have a life-expectancy of the life of the JVM. 
The objects that are in this heap are the class objects for system and shareable 
middleware and application classes.  The Garbage Collector never collects the system 
heap because all objects that are in the heap are either reachable for the lifetime of the 



JVM, or, in the case of shareable application classes, have been selected to be reused 
during the lifetime of the JVM. Figure 5 shows the layout of the system heap. The system 
heap is a chain of noncontiguous areas of storage. The initial size of the system heap is 
128 KB in 32-bit architecture, and 8 MB in 64-bit architecture. If the system heap fills, it 
obtains another extent and chains the extents together. 
 
2.5 The Free List 
 

Size

Next

Free storage

Size

Next

Free storage

Freelist

Null

Size

Next

Free storage

Size

Next

Free storage

Size

Next

Free storage

Size

Next

Free storage

Freelist

Null

 
Figure 6. The Free List 

   
Figure 6 shows the free list chain. The head of the list is in global storage and points to 
the first free chunk that is on the heap. Each chunk of free storage has a size field and a 
pointer that points to the next free chunk. The free chunks are in address sequence. The 
last free chunk has a NULL pointer. 
 



3 Allocation 
 
3.1 Heap lock allocation 
 
Heap lock allocation occurs when the allocation request is greater than 512 bytes or the 
allocation cannot be contained in the existing cache (see section “3.2 Cache Allocation”). 
Heap lock allocation requires a lock, and is avoided if possible by using the cache 
instead. 
 

If size < 512 or enough space in cache
try cacheAlloc
return if OK

HEAP_LOCK
Do

If there is a big enough chunk on freelist
takeit
goto Got it

else
manageAllocFailure
if any error

goto Get out
End Do
Got it:
Initialise object
Get out:
HEAP_UNLOCK

 
Figure 7. Heap Lock allocation 

 
Figure 7 Heap Lock allocation shows some pseudo code for heap lock allocation. The 
Garbage Collector first checks the size of the allocation request. If the size is less than 
512 bytes, or can be contained in the existing cache, the Garbage Collector tries to 
allocate by using cache allocation. If the Garbage Collector does not use cache allocation, 
or cache allocation failed to find free space, the HEAP_LOCK occurs. The Garbage 
Collector now searches the freelist for a chunk of free storage that is big enough to satisfy 
the allocation request. If it finds one, the Garbage Collector takes it and initializes the 
object, returning any remaining free storage to the freelist. Note that if the remaining free 
storage is less than 512 bytes plus the header size (12 bytes on 32-bit architecture, and 24 
bytes on 64-bit architecture) it is not put onto the freelist. These small areas of storage are 
known as ‘dark matter’.  They are recovered when the objects next to them become free 
or when the heap is compacted. If the Garbage Collector cannot find a big enough chunk 
of free storage an allocation failure occurs, and a garbage collection is performed. If the 



Garbage Collection created enough free storage, it searches the freelist again and picks up 
the free chunk. If the Garbage Collection does not find enough free storage, it returns an 
out of memory condition. The HEAP_LOCK is released either after the object has been 
allocated, or if not enough free space is found. 

3.1.1 Hints 
 
In some conditions, for example, in large heaps where the freelist has many small free 
spaces, or in an application that is allocating many larger allocations, the heap lock 
allocation scheme has a problem. The problem is that because the scheme always starts at 
the beginning of the list, it has to search through most of the long list to find a freespace 
that is big enough to satisfy an allocation. The quick freelist hint algorithm was 
introduced to solve this problem.  
 
For all heap lock allocation attempts that walk the freelist, the following data is collected: 
 

•  A search count of how many chunks on the freelist were examined before a 
freespace was found that was large enough to contain the desired allocation of 
size n. 

 
•  The size of the largest freespace chunk found in the freelist before the freespace 

that was used to satisfy the allocation request is also recorded. That is, the largest 
chunk that was not large enough to satisfy the request. 

 
When a freespace that can satisfy the allocation is found, if the search count is larger than 
20, it is desirable to create a new active hint that points into the freelist. 
 
Active hints can now be used to start searching the freelist, at a point other than the 
beginning, depending on the size of the allocation request. Hints are dynamically updated 
when chunks are allocated from the freelist. 
 



3.2 Cache Allocation 
 

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits

allocmax

allocsize

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits

allocmax

allocsize

Cache

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits

allocmax

allocsize

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits

allocmax

allocsize

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits

allocmax

allocsize

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits

allocmax

allocsize

Cache

 
Figure 8. A cache block on the heap 

 
Cache allocation is specifically designed to deliver the best possible allocation 
performance for small objects. Objects are allocated directly from a thread local 
allocation buffer that the thread has previously allocated from the heap. A new object is 
allocated from the end of this cache without the need to grab the heap lock; therefore, 
cache allocation is very efficient. The criterion for using cache allocation is: 
 

•  Use cache allocation if the size of the object is less than 512 bytes, or if the object 
can be contained in the current cache block. 

        
Figure 8 shows a cache block on the heap.  The cache block is sometimes called a thread 
local heap (TLH). When the Garbage Collector allocates a TLH for a thread, it goes 
through heap-locked allocation and reserves a part of the heap that will be used 
exclusively by a single thread. All cache allocation can then be made into the TLH 
without the need for any locks. Note that the allocbit is not set on for the TLH. The 
Garbage Collector sets allocbits bits for a TLH when the TLH is full or when a garbage 
collection cycle occurs. To increase the efficiency of allocating a TLH, the TLH allocator 
always takes the next free chunk on the free list up to a maximum size of 40 KB. 
 



heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits

allocmax

allocsize

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits

allocmax

allocsize

Cache

Object1
Object2

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits

allocmax

allocsize

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits

allocmax

allocsize

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits

allocmax

allocsize

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop

Heap Allocbits

allocmax

allocsize

Cache

Object1
Object2

 
Figure 9. Objects allocated within cache block 

 
Figure 9 shows some objects that have been allocated in the TLH. Here, objects are 
allocated from the back of the TLH. Objects can be allocated from the back of the TLH 
more efficiently than they can from the front. Figure 9 also shows that no allocbits have 
been set. They will be set for all objects in the TLH when the cache is full or when a 
garbage collection occurs. 
 



4 Garbage Collection 
 
Garbage collection is performed when an allocation failure occurs in heap lock 
allocation, or if a specific call to System.gc() occurs. The thread that has the allocation 
failure or the System.gc() call takes control and performs the garbage collection. It first 
gets all the locks that are required for a garbage collection, and then suspends all the 
other threads. Garbage collection then goes through the three phases: mark, sweep, and, 
optionally, compaction. The IBM Garbage Collector is known as a stop-the-world (STW) 
operation, because all application threads are stopped while the garbage is collected. 
 
4.1 Mark Phase 
 
In this phase, all the live objects are marked. Because unreachable objects cannot be 
identified singly, all the reachable objects must be identified. Therefore, everything else 
must be garbage. The process of marking all reachable objects is also known as tracing. 
 
The active state of the JVM is made up of the saved registers for each thread, the set of 
stacks that represent the threads, the static’s that are in Java classes, and the set of local 
and global JNI references. All functions that are invoked in the JVM itself cause a frame 
on the C stack. This frame might contain instances of objects as a result of either an 
assignment to a local variable, or a parameter that is sent from the caller. All these 
references are treated equally by the tracing routines. The Garbage Collector views the 
stack of a thread as a set of 4-byte fields (8 bytes in 64-bit architecture) and scans them 
from the top to the bottom of each of the stacks. The Garbage Collector assumes that the 
stacks are 4-byte aligned (8-byte aligned in 64-bit architecture). Each slot is examined to 
see whether it points at an object that is in the heap. Note that this does not make it 
necessarily a pointer to an object, because it might be only an accidental combination of 
bits in a float or integer.  So, when the Garbage Collector performs the scan of a thread 
stack, it handles conservatively anything that it finds.  Anything that points at an object is 
assumed to be an object, but the object in question must not be moved during garbage 
collection. A slot is thought to be a pointer to an object if it meets these three 
requirements: 
1. It is grained (aligned) on an 8-byte boundary. 
2. It is inside the bounds of the heap. 
3. The allocbit is on. 
 
Objects that are referenced in this way are known as roots, and have their dosed bit set on 
to indicate that they cannot be moved. The setting of dosed bits is done only if the 
Garbage Collector is to perform a compaction. Tracing can now proceed accurately. That 
is, the Garbage Collector can find references in the roots to other objects and, because it 
knows that they are real references, it can move them during compaction because it can 
change the reference.  The tracing process uses a stack that can hold 4 KB entries. All 
references that are pushed to the stack are marked at the same time by setting the relevant 
markbit to on. The roots are marked and pushed to the stack and then the Garbage 
Collector starts to pop entries off the stack and trace them. Normal objects (not arrays) 
are traced by using the mtpr to access the classblock, which tells where references to 



other objects are to be found in this object. As each reference is found, if it is not already 
marked, it is marked and pushed. 
 
Array objects are traced by looking at each array entry and, if it is not already marked, it 
is marked and pushed. Some additional code traces a small portion of the array at a time, 
to try to avoid mark stack overflow. 
 
The above process continues repeatedly until the mark stack eventually becomes empty. 
 

4.1.1 Mark stack overflow 
 
Because the mark stack has a fixed size, it can overflow. Although mark stack overflow 
is a rare event, it has a negative impact on pause time when it occurs. 

4.1.1.1 The overflow set 
 
To remember the locations of untraced objects  the Garbage Collector needs a bit array 
that maps the whole heap. The FR_bits array, which is used for Incremental Compaction 
(IC), does this with one bit for every possible reference slot in the heap (that is, one bit 
for every four bytes on 32-bit platforms, and one bit for every eight bytes on 64-bit 
platforms). Since the JVMObject header cannot contain any object references we know 
that the first two bits in the FR_bits array for a given object are never used by IC. The 
Garbage Collector can, therefore, use the first of these 'spare' bits in the FR_bits array to 
implement the Overflow set. 

4.1.1.2 Handling mark stack overflow for non-system heap objects 
 
When a thread tries to push a reference onto the mark stack and finds that the marks stack 
is full it will try to publish work to its local mark queue. If the publish fails then the 
thread will set the bit in the FR_bits bit array which corresponds to the object referenced 
by the reference being pushed and set a global flag to indicate an overflow has occurred. 
 
Tracing can then continue and all other references which cannot be pushed have the 
associated bit in the FR_bits bit array set. 
 
Once a thread has exhausted its mark stack it then tries to take control of the overflow set. 
This is done by setting the global flag indicating an overflow has occurred to False which 
guarantees sole ownership of the overflow set. Once ownership has been established the 
thread scans the bit array and for any non-zero bit. When such a bit is found it is cleared 
and the corresponding reference is pushed onto the markstack. Once a sufficient number 
of references have been pushed onto the mark stack they are published to the local mark 
queue. This allows other threads to assist with the processing of the overflow set. 
 



It is possible that a mark stack overflow could occur whilst processing the overflow set, if 
this happens then the global flag is set to indicate an overflow has occurred and the 
process above is repeated. 

4.1.1.3 The System heap overflow mechanism 
 
When collecting the root set, the Garbage Collector pushes onto mark stacks the address 
of all classes that are in the system and ACS heaps. So, a mark stack overflow might 
occur. However, the FR_bits array maps only the non-system heaps, and therefore, it 
cannot be used to remember untraced objects in system and ACS heaps. 
 
The list of loaded classes is not modified during the mark phase of a garbage collection 
cycle. Therefore when mark stack overflow occurs all the Garbage Collector needs to 
remember is the place that it reached in the chain before the mark stack overflow 
occurred. The Garbage Collector uses two new global variables for this purpose: 
‘overflowSystemClasses’ and ‘overflowACSClasses’ for system and ACS heaps 
respectively. When the Garbage Collector does mark stack overflow processing, these 
variables tell it where it stopped. 

4.1.1.4 Handling mark stack overflow for system heap objects 
 
Once a thread has exhausted its mark stack during parallelMark it checks to see if either 
overflowSystemClasses or overflowACSClasses is set. If one of the values is set then the 
thread will attempt to get control of the associated list by setting the value back to NULL. 
Once a thread has sole control of the list it processes it as before, pushing the references 
onto the mark stack and once sufficient references have been pushed, publishing the work 
on the local mark queue allowing other threads to assist. 
 
If a mark stack overflow occurs whilst processing the overflow list then the thread simply 
sets the relevant flag to point at where it had got to and repeats the process above. 
 



4.1.2 Parallel Mark 
 
With Bitwise Sweep and Compaction Avoidance, the majority of garbage collection time 
is spent marking objects. Therefore, a parallel version of Garbage Collector Mark has 
been developed. The goal of Parallel Mark is to not degrade performance on a 
uniprocessor machine and to increase typical mark performance fourfold on an 8-way 
machine. 
 
The time spent marking objects is decreased through the addition of helper threads and a 
facility that shares work between those threads. A single application thread is used as the 
master coordinating thread, often known as the main gc thread. This thread has the 
responsibility for scanning C-stacks to identify root pointers for the collection. A 
platform with N processors also has N-1 new helper threads that work with the master 
thread to complete the marking phase of garbage collection. The default number of 
threads can be overridden with the -Xgcthreadsn parameter. A value of 1 results in no 
helper threads. Values of 1 through N are accepted. 
 
At a high level, each marker thread is provided with a local stack and a sharable queue, 
both of which contain references to objects that are marked but not yet scanned. Threads 
do most of the marking work by using their local stacks, synchronizing on sharable 
queues only when work balance requires it. Mark bits are updated by using atomic 
primitives that require no additional lock. 
 
Because each thread has a Mark Stack that can hold 4 KB entries and a Mark Queue that 
can hold 2 KB entries, the chances of a Mark Stack Overflow are reduced. 

4.1.3 Concurrent Mark 
 
Concurrent mark gives reduced garbage collection pause times when heap sizes increase. 
It starts a concurrent marking phase before the heap is full. In the concurrent phase, the 
Garbage Collector scans the roots by asking each thread to scan its own stack. These 
roots are then used to trace live objects concurrently. Tracing is done by a low-priority 
background thread and by each application thread when it does a heap lock allocation. 
  
While the Garbage Collector is marking live objects concurrently with application 
threads running, it has to record any changes to objects that are already traced. To do this, 
it uses a write barrier that is activated every time a reference in an object is updated. The 
heap is divided into 512-byte sections and each section is allocated a byte in the card 
table. Whenever a reference to an object is updated, the card that corresponds to the start 
address of the object that has been updated with the new object reference is marked with 
0x01. A byte is used instead of a bit for two reasons: a write to a byte is quicker than a bit 
change, and the other bits are reserved for future use.  
 



A STW (Stop The World) collection is started when one of the following occurs: 
 

•  An allocation failure 
•  A System.gc 
•  Concurrent mark completes all the marking that it can do  

 
The Garbage Collector tries to start the concurrent mark phase so that it completes at the 
same time that the heap is exhausted. The Garbage Collector does this by constant tuning 
of the parameters that govern the concurrent mark time.  
 
In the STW phase, the Garbage Collector scans all roots, uses the marked cards to see 
what must be retraced, and then sweeps as normal. It is guaranteed that all objects that 
were unreachable at the start of the concurrent phase are collected. It is not guaranteed 
that objects that become unreachable during the concurrent phase are collected. 
 
Reduced pause times are the benefit of concurrent mark but they come at a cost. 
Application threads must do some tracing when they are requesting a heap lock 
allocation. The overhead varies depending on how much idle CPU time is available for 
the background thread. Also, the write barrier has an overhead. 
 
This parameter enables concurrent mark: 
 
-Xgcpolicy: <optthruput|optavgpause> 
 
Setting -Xgcpolicy to optthruput disables concurrent mark. If you do not have pause time 
problems (as seen by erratic application response times), you get the best throughput with 
this option. Optthruput is the default setting. 
 
 Setting -Xgcpolicy to optavgpause enables concurrent mark with its default values. If 
you are having problems with erratic application response times that are caused by 
normal garbage collections, you can reduce those problems at the cost of some 
throughput by using the optavgpause option. 
 



4.2 Sweep Phase 
 
After the mark phase, the markbits vector contains a bit for every reachable object that is 
in the heap, and must be a subset of the allocbits vector. The sweep phase identifies the 
intersection of the allocbits and markbits vectors; that is, objects that have been allocated 
but are no longer referenced. 
 
In the bitsweep technique, the Garbage Collector examines the markbits vector directly 
and looks for long sequences of zeros, which probably identify free space. When such a 
long sequence is found, the Garbage Collector checks the length of the object at the start 
of the sequence to determine the amount of free space that is to be released. If this 
amount of free space is greater than 512 bytes plus the header size, this free chunk is put 
on the freelist. 
 
The small areas of storage that are not on the freelist are known as "dark matter", and 
they are recovered when the objects that are next to them become free, or when  the heap 
is compacted. It is not necessary to free the individual objects in the free chunk, because 
it is known that the whole chunk is free storage. When a chunk is freed, the Garbage 
Collector has no knowledge of the objects that were in it. During this process, the 
markbits are copied to the allocbits so that on completion, the allocbits correctly represent 
the allocated objects that are on the heap. 

4.2.1 Parallel Bitwise Sweep 
 
Parallel Bitwise Sweep improves sweep time by using all available processors. In Parallel 
Bitwise Sweep, the Garbage Collector uses the same helper threads that are used in 
Parallel Mark, so the default number of helper threads is also the same and can be 
changed with the -Xgcthreadsn parameter. The heap is divided into sections. The 
number of sections is significantly larger than the number of helper threads. The 
calculation for the number of sections is as follows: 
 

•  32 x the number of helper threads, or  
•  The maximum heap size + 16 MB 

 
Whichever is larger. The helper threads take a section at a time and scan it, performing a 
modified bitwise sweep. The results of this scan are stored for each section. When all 
sections have been scanned, the freelist is built. 
 



4.3 Compaction Phase 
 
After the garbage has been removed from the heap, the Garbage Collector can compact 
the resulting set of objects to remove the spaces that are between them. The process of 
compaction is complicated because, if any object is moved, the Garbage Collector must 
change all the references that exist to it. If one of those references was from a stack, and 
therefore the Garbage Collector is not sure that it was an object reference (it might have 
been a float, for example), the Garbage Collector cannot move the object. Such objects 
that are temporarily fixed in position are referred to as dosed in the code, and have the 
dosed bit set in the header word to indicate this fact. Similarly, objects can be pinned 
during some JNI operations. Pinning has the same effect, but is permanent until the object 
is explicitly unpinned by JNI. Objects that remain mobile are compacted in two phases by 
taking advantage of the fact that the mptr is known to have the low three bits set to zero. 
One of these bits can therefore be used to denote the fact that it has been swapped. Note 
that this swapped bit is applied in two places: the size + flags field (where it is known as 
OLINK_IsSwapped) and also the mptr (where it is known as GC_FirstSwapped). In both 
cases, the least significant bit (x01) is being set. 
 
The following analogy might help you understand the compaction process. 
 

A B

A B

Before

After

A BA B

A BA B

Before

After

 
Figure 10. Compaction at work 

 
Figure 10 shows the effects of compaction. If you imagine a corridor runs from A to B 
and contains several pieces of furniture (solid shapes), which represent objects, and gaps 
(clear shapes), which represent free space and dark matter. A couple of pieces of furniture 
have been nailed to the floor (Diamond checked shapes), which represent pinned or dosed 
objects. The goal of compaction is to move all the furniture to end A of the corridor. It 
does this by taking each piece of furniture from the left in turn and pushing it as far to the 



end as possible. Unfortunately furniture cannot be lifted over the pieces which had been 
nailed down so the pieces to the right of these can only be moved to adjoin them. 

4.3.1Compaction Avoidance 
 

 
 
Compaction avoidance focuses on correct object 
placement. It therefore reduces, and in many 
cases removes, the need for compaction. An 
important point of this approach is a concept that 
is called wilderness preservation. Wilderness 
preservation attempts to keep a region of the 
heap in an unused state by focusing allocation 
activity elsewhere. It does this by making a 
boundary between most of the heap and a 
reserved wilderness portion. In typical cases, 
non-compacting garbage collection events are 
triggered whenever the wilderness is threatened. 
The wilderness is consumed (eroded) only when 
necessary to satisfy a large allocation, or when 
not enough allocation progress has been made 
since the previous garbage collection. 
 
Figure 11 shows the wilderness on the heap. The 
wilderness is allocated at the end of the active 
part of the heap. Its initial size is 5% of the active 
part of the heap, and it expands and shrinks 
depending on usage. On heap lock allocation 
failure, if enough allocation progress has been 
made since the last garbage collection, and the 

size of the allocation request is less than 64 KB, the Garbage Collector runs. Enough 
progress means that at least 30% of the heap has been allocated since the last garbage 
collection. This is the default. It can be changed with the -Xminf parameter. If not 
enough progress has been made, or if the size of the allocation request is equal to or 
greater than 64 KB, the allocation is immediately satisfied from the wilderness if 
possible. Otherwise, a normal allocation failure occurs. Not enough progress has been 
made if the Garbage Collector gets an allocation request for a large object that cannot be 
satisfied before the free list is exhausted. In this condition, the reserved wilderness can 
satisfy the request, and avoid a garbage collection and a compaction. 
 

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop
Heap

Wilderness

heapbase

heaplimit

heaptop

heapbase

heaplimit

heaptop
Heap

Wilderness

Figure 11. The wilderness 



Compaction occurs if any one of the following is true and -Xnocompactgc has not been 
specified: 
 

•  -Xcompactgc has been specified. 
•  Following the sweep phase, not enough free space is available to satisfy the 

allocation request. 
•  A System.gc() has been requested, and the last compaction occurred before the 

last allocation failure or concurrent mark collection. 
•  At least half the previously available memory has been consumed by TLH 

allocations (ensuring an accurate sample) and the average TLH size falls below 
1000 bytes. 

•  Less than 5% of the active heap is free. 
•  Less than 128 KB of the active heap is free. 

4.3.2 Incremental Compaction 

4.3.2.1 Introduction 
 
When objects are freed by garbage collection, the heap becomes fragmented. This 
fragmentation can cause a state in which enough free space is still available in the heap, 
but the free space is not contiguous, so it cannot be used for further object allocations. 
 
Compaction defragments the Java heap. It is a process of moving scattered chunks of 
allocated spaces in the heap to one end of the heap, thereby creating a large, contiguous 
space at the other end. However the process of compaction can cause a considerable 
increase in the pause time of a garbage collection cycle, pause times of 40 seconds are 
quite possible for the compaction of a 1 GB heap. Such long pause times are often 
unacceptable for real-world applications. Incremental compaction is a way of spreading 
compaction work across garbage collection cycles, thereby reducing pause times.   
 
Another important task for Incremental Compaction is the removal of dark matter. Dark 
matter is the term for small pieces of free space (currently less than 512 bytes in size) that 
are not on the free list and therefore are not available for allocation of objects. The level 
of the dark matter that is in the heap directly affects application throughput, because more 
dark matter means that less free space is available on the heap for object allocation, and 
less free space means that more garbage collection cycles will occur, having a serious 
affect on application performance. Such pieces might be scattered throughout the heap 
and might occupy a surprisingly large fraction of the total heap size. 
 



4.3.2.2 Overview of Incremental Compaction 
 
In incremental compaction, the Garbage Collector splits the heap into sections and 
compacts each section in the same way in which it does a full compaction. That is, the 
Garbage Collector moves all the moveable objects down the heap. This action retrieves 
all the dark matter and leaves large areas of free space. Individual sections on which 
incremental compaction runs are of fixed size, and therefore constrains the time required 
for compaction. 
 

16MB
One section per thread

After

Before

“dark matter” (< 512 bytes)

16MB
One section per thread

After

Before

“dark matter” (< 512 bytes)

 
Figure 12. Incremental Compaction 

 
In the upper diagram of Figure 12, marked portions are live objects, and unmarked 
portions represent free space. Dark matter might exist among the free spaces, depending 
on the size of the free chunk. The lower diagram of Figure 11 shows the condition after 
incremental compaction. Live objects have been moved to one end of the section, thereby 
freeing up space on the other end. 
 
Incremental compaction is done only if the heap size is greater than a minimum value, 
currently 128 MB. If the heap size is less than 128 MB, incremental compaction fails to 
provide significant improvement in pause time compared to full compaction.  
 



Incremental compaction has two main steps:  
 

1) Identify and remember all references that point into the compaction region; this 
action is done during the mark phase. At the end of this stage, all free space that is 
in the sections can be identified.  

2) Compute the new locations of objects and move them in the compaction region. 
Then set up pointers to those objects. 

 
Incremental compaction operates in a cycle. An incremental compaction cycle is a 
cycle of successive garbage collection cycles that incrementally compacts the whole 
heap, a region at a time. The compaction spans multiple garbage collection cycles, 
therefore spreading compaction time over multiple garbage collections and reducing 
pause times. 

4.3.2.3 Main parameters related to IC 
 
Incremental compaction is set on by default. The decision to run incremental compaction 
in any given garbage collection cycle is made depending on a few triggers (see section 
“4.8.11 verbosegc for a concurrent mark collection with :Xgccon”). However, two 
parameters let the user decide whether to run with incremental compaction or with 
conventional compaction. Those parameters are: 
 
 -Xpartialcompactgc, which initiates an incremental compaction every garbage 

collection cycle, unless a full compaction is required 
 -Xnopartialcompactgc, which turns off incremental compaction for the life of the 

JVM. 
 
However, note that these -X options are nonstandard and are subject to change without 
notice. 
 



4.4 Reference Objects 
 
Reference objects enable all references to be handled and processed in the same way. 
Therefore, the Garbage Collector creates two separate objects on the heap: the object 
itself and a separate reference object. The reference objects can optionally be associated 
with a queue to which they will be added when the referent becomes unreachable. 
Instances of SoftReference, WeakReference, and PhantomReference are created by the 
user and cannot be changed; they cannot be made to refer to objects other than the object 
that they referenced on creation. Objects that are associated with a finalizer are 
'registered' with the Finalizer class on creation. The result is the creation of a 
FinalReference object that is associated with the Finalizer queue and that refers to the 
object that is to be finalized. 
  
During garbage collection, these reference objects are handled specially; that is, the 
referent field is not traced during the marking phase. When marking is complete, the 
references are processed in sequence: 
 

1) Soft 
2) Weak 
3) Final 
4) Phantom 

 
Processing of SoftReference objects is specialized; that is, the ST component can decide 
that these references should be cleared if the referent is unmarked (unreachable except for 
a path through a reference). The clearing is done if memory is running out and is done 
selectively on the principle of most recent usage. Usage is measured by the last time that 
the get method was called, which can give some unexpected, although valid, results. 
When a reference object is being processed, its referent is marked, ensuring that when, 
for example, a FinalReference is processed for an object that also has a SoftReference, 
when processing the FinalReference a marked referent is seen. The FinalReference, 
therefore, is not queued for processing. The result is that references are queued in 
successive garbage collection cycles. 
  
References to unmarked objects are initially queued to the ReferenceHandler thread that 
is in the reference class. The ReferenceHandler takes objects off its queue and looks at 
their individual queue field. If an object is associated with a specific queue, it is requeued 
to it for further processing. Therefore, the FinalReference objects are requeued and 
eventually their finalize method is run by the finalizer thread. 

4.4.1 JNI weak references 
 
JNI weak references provide the same capability as WeakReference objects do, but the 
processing is very different. A JNI routine can create a JNI Weak reference to an object 
and later delete that reference. The Garbage Collector clears any weak reference where 
the referent is unmarked, but no equivalent of the queuing mechanism exists. Note that 
failure to delete a JNI Weak reference causes a memory leak in the table and performance 



problems. This is also true for JNI global references. The processing of JNI weak 
references is handled last in the reference handling process. The result is that a JNI weak 
reference can exist for an object that has already been finalized and had a phantom 
reference queued and processed. 
 
4.5 Heap Expansion 
 
Heap expansion occurs after garbage collection and after all the threads have been 
restarted, but while the HEAP_LOCK is still held. The active part of the heap is 
expanded up to the maximum if any one of the following is true: 
 

•  The Garbage Collector did not free enough storage to satisfy the allocation 
request. 

•  Free space is less than the minimum free space, which you can set by using the -
Xminf parameter. The default is 30%. 

•  More than 13% of the time is being spent in garbage collection, and expanding by 
the minimum expansion amount (-Xmine) does not result in a heap that is greater 
than the maximum percentage of free space (-Xmaxf). 

 
The amount to expand the heap is calculated as follows: 
 

•  If the heap is being expanded because less than -Xminf (default 30%) free space 
is available, the Garbage Collector calculates how much the heap needs to expand 
to get -Xminf free space.   If this is greater than the maximum expansion amount, 
which you can set with the -Xmaxe parameter (default of 0, which means no 
maximum expansion), the calculation is reduced to -Xmaxe. If this is less than the 
minimum expansion amount, which you can set with the -Xmine parameter 
(default of 1 MB), it is increased to -Xmine. 

•  If the heap is expanding because the Garbage Collector did not free enough 
storage and the JVM is not spending more than 13% in garbage collection, the 
heap is expanded by the allocation request. 

•  If the heap is expanding for any other reason, the Garbage Collector calculates 
how much expansion is needed to get 17.5% free space. This is adjusted as above, 
depending on -Xmaxe and -Xmine. 

•  Finally, the Garbage Collector must ensure that the heap is expanded by at least 
the allocation request if garbage collection did not free enough storage. 

 
All calculated expansion amounts are rounded up to a 64 KB boundary on 32-bit 
architecture, or a 4 MB boundary on 64-bit architecture. 
 



4.6 Heap Shrinkage 
 
Heap shrinkage occurs after garbage collection, but when all the threads are still 
suspended. Shrinkage does not occur if any one of the following is true: 
 

•  The Garbage Collector did not free enough space to satisfy the allocation request. 
•  The maximum free space, which can be set by the -Xmaxf parameter (default is 

60%), is set to 100%. 
•  The heap has been expanded in the last three garbage collections. 
•  This is a System.gc() and the amount of free space at the beginning of the garbage 

collection was less than -Xminf (default is 30%) of the live part of the heap. 
 
If none of the above is true and more than -Xmaxf free space exists, the Garbage 
Collector must calculate by how much to shrink the heap to get it to -Xmaxf free space, 
without going below the initial (-Xms) value. This figure is rounded down to a 64 KB 
boundary on 32-bit architecture, or a 4 MB boundary on 64-bit architecture. 
 
A compaction occurs before the shrink if all the following are true: 
 

•  A compaction was not done on this garbage collection cycle. 
•  No free chunk is at the end of the heap, or the size of the free chunk that is at the 

end of the heap is less than 10% of the required shrinkage amount. 
•  The Garbage Collector did not shrink and compact on the last garbage collection 

cycle 
 
4.7 Resettable JVM 
 
The resettable JVM was introduced in release 1.3.0, and is available only on z/OS. 
 
Documentation on the Resettable JVM can be found in the “Persistent Reusable Java 
Virtual Machine” user’s guide. 
 
This is available externally at http://www.s390.ibm.com/Java 
 
 
 
 
 
 



4.8 verbosegc 
 
A good way to see what is going on with Garbage Collection is to use verbosegc which is 
enabled by the -verbosegc option. 

4.8.1 verbosegc output from a System.gc 

<GC(3): GC cycle started Tue Mar 19 08:24:34 2002
<GC(3): freed 58808 bytes, 27% free (1163016/4192768), in 14 ms>
<GC(3): mark: 13 ms, sweep: 1 ms, compact: 0 ms>
<GC(3): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>  

Figure 13. Example of verbosegc from a System.gc 

 
Figure 13Error! Reference source not found. shows an example of a System.gc() 
collection, or forced garbage collection.  All the lines start with GC(3), which indicates 
that this was the third garbage collection in this JVM. The first line shows the date and 
time of the start of the collection. The second line shows that 58808 bytes were freed in 
14 ms, resulting in 27% free space in the heap. The figures in parentheses show the actual 
number of bytes that are free, and the total bytes that are available in the heap. The third 
line shows the times for the mark, sweep, and compaction phases. In this case, no 
compaction occurred, so the time is zero. The last line shows the reference objects that 
were found during this garbage collection, and the threshold for removing soft references. 
In this case, no reference objects were found. 

4.8.2 verbosegc output from an allocation failure 
<AF[5]: Allocation Failure. need 32 bytes, 286 ms since last AF>
<AF[5]: managing allocation failure, action=1 (0/6172496) (247968/248496)>
<GC(6): GC cycle started Tue Mar 19 08:24:46 2002
<GC(6): freed 1770544 bytes, 31% free (2018512/6420992), in 25 ms>
<GC(6): mark: 23 ms, sweep: 2 ms, compact: 0 ms>
<GC(6): refs: soft 1 (age >= 4), weak 0, final 0, phantom 0>
<AF[5]: completed in 26 ms>  

Figure 14. Example of verbosegc from an allocation failure 

 
Figure 14 shows an example of an allocation failure (AF) collection. An allocation failure 
does not mean that an error has occurred in the code; it is the name that is given to the 
event that triggers when it is not possible to allocate a large enough chunk from the heap. 
The output contains the same four lines that are in the System.gc() verbose output, and 
some additional lines. The lines that start with AF[5] are the allocation failure lines and 
indicate that this was the fifth AF collection in this JVM. The first line shows how many 
bytes were required by the allocation that had a failure, and how long it has been since 
the last AF. The second line shows what action the Garbage Collector is taking to solve 



the AF, and how much free space is available in the main part of the heap, and how much 
is available in the wilderness. The possible AF actions are: 
 

•  0 - The Garbage Collector has tried to allocate from the pinned free list,  and 
failed. 

•  1 - A garbage collection to avoid use of the wilderness. It is designed to avoid 
compactions by keeping the wilderness available for a large allocation request. 

•  2 - The Garbage Collector has tried to allocate out of the wilderness, and failed. 
•  3 - The Garbage Collector is going to attempt to expand the heap. 
•  4 - The Garbage Collector is going to clear any remaining soft references. This 

occurs only if less than 12% free space is available in a fully expanded heap. 
•  5 - This action applies only to resettable mode and means that garbage collection 

is going to try to take some space from the transient heap. 
•  6 - This is not an action. It outputs a verbosegc message to say that the JVM is 

very low on heap space, or totally out of heap space. 
 
The last line shows how long the AF took, including the time taken to stop and start all 
the application threads. 

4.8.3 verbosegc for a heap expansion 
<AF[11]: Allocation Failure. need 24 bytes, 182 ms since last AF>
<AF[11]: managing allocation failure, action=1 (0/6382368) (10296/38624)>
<GC(12): GC cycle started Tue Mar 19 08:24:49 2002
<GC(12): freed 1877560 bytes, 29% free (1887856/6420992), in 21 ms>
<GC(12): mark: 19 ms, sweep: 2 ms, compact: 0 ms>
<GC(12): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>
<AF[11]: managing allocation failure, action=3 (1887856/6420992)>
<GC(12): need to expand mark bits for 7600640-byte heap>
<GC(12): expanded mark bits by 16384 to 118784 bytes>
<GC(12): need to expand alloc bits for 7600640-byte heap>
<GC(12): expanded alloc bits by 16384 to 118784 bytes>
<GC(12): expanded heap by 1179648 to 7600640 bytes, 40% free>
<AF[11]: completed in 31 ms>  

Figure 15. Example of verbosegc for heap expansion 

 
Figure 15 shows an example of verbosegc for an AF collection that includes a heap 
expansion. The output is the same as a verbosegc output for an AF, plus some additional 
lines for the expansion. It shows by how much the markbits, the allocbits, and the heap 
are expanded, and how much free space is available. In the example, the heap was 
expanded by 1179648 bytes to give 40% free space. 
 



4.8.4 verbosegc for a heap shrinkage 
<AF[9]: Allocation Failure. need 32 bytes, 92 ms since last AF>
<AF[9]: managing allocation failure, action=1 (0/22100560) (1163184/1163184)>
<GC(9): may need to shrink mark bits for 22149632-byte heap>
<GC(9): shrank mark bits to 348160>
<GC(9): may need to shrink alloc bits for 22149632-byte heap>
<GC(9): shrank alloc bits to 348160>
<GC(9): shrank heap by 1114112 to 22149632 bytes, 79% free>
<GC(9): GC cycle started Tue Mar 19 11:08:18 2002
<GC(9): freed 17460600 bytes, 79% free (17509672/22149632), in 7 ms>
<GC(9): mark: 4 ms, sweep: 3 ms, compact: 0 ms>
<GC(9): refs: soft 0 (age >= 6), weak 0, final 0, phantom 0>
<AF[9]: completed in 8 ms>  

Figure 16. Example of verbosegc for heap shrinkage 

 
Figure 16 shows an example of verbosegc for an AF collection that includes heap 
shrinkage. This output is very similar to the verbosegc output for heap expansion. It 
shows by how much the markbits, the allocbits, and the heap are shrunk, and how much 
free space is available. In the example, the heap shrank by 1114112 bytes to give 79% 
free space. One other difference between the verbosegc output for heap expansion and 
heap shrinkage is the sequence of the output. This difference occurs because expansion 
happens after all the threads have been restarted and shrinkage happens before all the 
threads have been restarted. 

4.8.5 verbosegc for a compaction 

<AF[2]: Allocation Failure. need 88 bytes, 5248 ms since last AF>
<AF[2]: managing allocation failure, action=1 (0/4032592) (160176/160176)>
<GC(2): GC cycle started Tue Mar 19 11:32:28 2002
<GC(2): freed 1165360 bytes, 31% free (1325536/4192768), in 63 ms>
<GC(2): mark: 13 ms, sweep: 1 ms, compact: 49 ms>
<GC(2): refs: soft 0 (age >= 32), weak 0, final 3, phantom 0>
<GC(2): moved 32752 objects, 2511088 bytes, reason=2, used 8 more bytes>
<AF[2]: completed in 64 ms>  

Figure 17. Example of verbosegc for compaction 

 
Figure 17 shows an example of verbosegc for a compaction. The main difference 
between this and the outputs for a normal AF collection is the additional line that shows 
how many objects have been moved, how many bytes have been moved, the reason for 
the compaction, and how many additional bytes have been used. It is possible to use 
additional bytes if the Garbage Collector moves an object that has been hashed as it has 
to store the hash value in the object which might mean increasing the object size. The 



“reason” will be “IC reason” if this was an incremental compaction. The possible reasons 
for a compaction are as follows: 
 

•  1 - Following the mark and sweep phase, not enough free space is available for 
the allocation request. 

•  2 - The heap is fragmented and will benefit from a compaction. 
•  3 - Less than half the -Xminf value is free space (the default is 30% in which case 

this will be less than 15% free space), and the free space plus the dark matter is 
not less than -Xminf. 

•  4 - A System.gc() collection. 
•  5 - Less than 5% free space is available. 
•  6 - Less than 128 KB free space is available. 
•  7 - The -Xcompactgc parameter has been specified. 
•  8 - The transient heap has less than 5% free space available. 
•  11 - A compaction occurred before the attempt to shrink the heap. 
•  12 - An incremental compaction occurred because of excessive dark matter 
•  13 - The -Xpartialcompactgc parameter has been specified. 
•  14 - An incremental compaction occurred because of wilderness expansion. 
•  15 - An incremental compaction occurred because not enough free space is 

available in the wilderness. 

4.8.6 verbosegc for concurrent mark kick-off 
<CONCURRENT GC Free= 379544 Expected free space=    378884 Kickoff=379406>
<  Initial Trace rate is   8.01>  

Figure 18. Example of verbosegc for concurrent mark kick-off 

 
Figure 18 shows the two lines that are the verbosegc output that indicate that the 
concurrent phase has started. The first line shows how much free space is available, and 
how much will be available after this heap lock allocation. The Kickoff value is the level 
at which concurrent mark starts. In this example, the expected space is 378884, which is 
less than the Kickoff value of 379406. The second line shows the initial trace rate. In this 
example, it is 8.01, which means that for every byte that is allocated in a heap lock 
allocation, the Garbage Collector must trace 8.01 bytes of live data. 
 



4.8.7 verbosegc for a concurrent mark System.gc collection 

<GC(23): Bytes Traced =0 (Foreground: 0+ Background: 0) State = 3 >
<GC(23): GC cycle started Fri Oct 11 08:45:34 2002
<GC(23): freed 12847376 bytes, 94% free (127145208/134216192), in 975 ms>
<GC(23): mark: 408 ms, sweep: 70 ms, compact: 497 ms>
<GC(23): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>
<GC(23): moved 95811 objects, 6316896 bytes, reason=4>  

Figure 19. Example of verbosegc for a concurrent mark System.gc 

 
Figure 19 shows an example of verbosegc for a concurrent mark System.gc. The first line 
of the output with concurrent mark shows the state as a numeric value. The possible 
values for this field are: 
 

•  HALTED (0) 
•  EXHAUSTED (1)  
•  EXHAUSTED_BK_HELPER (2) 
•  ABORTED (3).  

 
In this case, it is 3 (ABORTED) to show that concurrent mark did not complete the 
initialization phase and was therefore aborted. The output also shows the number of bytes 
which were traced during the concurrent phase, this is also split to show the amount of 
tracing in the foreground and background. 

4.8.8 verbosegc for a concurrent mark AF collection 
<AF[7]: Allocation Failure. need 528 bytes, 493 ms since last AF or CON>
<AF[7]: managing allocation failure, action=1 (0/3983128) (209640/209640)>
<GC(8): Bytes Traced =670940 (Foreground: 73725+ Background: 597215) State = 0
<GC(8): GC cycle started Tue Oct 08 13:43:14 2002
<GC(8): freed 2926496 bytes, 74% free (3136136/4192768), in 8 ms>
<GC(8): mark: 7 ms, sweep: 1 ms, compact: 0 ms>
<GC(8): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>
<AF[7]: completed in 10 ms>  

Figure 20. Example of verbosegc for a concurrent mark AF collection 

 
Figure 20 shows an example of verbosegc for an AF collection with concurrent mark 
running.  
 
The Traced figures in parentheses show how much is traced by the application threads 
and how much is traced by the background thread. The total byte traced is the sum of the 
work that is done by the background and foreground traces. State is 0, which means 
concurrent is HALTED. 
 



4.8.9 verbosegc for a concurrent mark AF collection with :Xgccon 
<AF[19]: Allocation Failure. need 65552 bytes, 106 ms since last AF or CON>
<AF[19]: managing allocation failure, action=1 (83624/16684008) (878104/878104)>
<GC(20): Bytes Traced =1882061 (Foreground: 1292013+ Background: 590048) State = 0 >
<GC(20): Card Cleaning Done. Cleaned:27 (0 skipped). Estimation 593 (Factor 0.017)>
<GC(20): GC cycle started Fri Oct 11 10:23:49 2002
<GC(20): freed 8465280 bytes, 53% free (9427008/17562112), in 9 ms>
<GC(20): mark: 7 ms, sweep: 2 ms, compact: 0 ms>
<GC(20): In mark: Final dirty Cards scan: 41 cards
<GC(20): refs: soft 0 (age >= 6), weak 0, final 0, phantom 0>  

Figure 21. Example of verbosegc for a concurrent mark AF collection with :Xgccon 

 
Figure 21 shows an example of verbosegc for an AF collection with concurrent mark 
running and the :Xgccon parameter set.  Line 3 shows a state of 0, which means 
concurrent is HALTED. Line 4 shows that concurrent card cleaning was performed for 
27 cards, while estimation is the number of dirty cards found.  

4.8.10 verbosegc for a concurrent mark collection 
<CON[41]: Concurrent collection, (284528/8238832) (17560/17168), 874 ms since last CON or AF>
<GC(45): Bytes Traced =5098693 (Foreground: 555297+ Background: 4543396) State = 2 >
<GC(45): GC cycle started Tue Oct 08 12:31:14 2002
<GC(45): freed 2185000 bytes, 30% free (2487088/8256000), in 7 ms>
<GC(45): mark: 5 ms, sweep: 2 ms, compact: 0 ms>
<GC(45): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>
<CON[41]: completed in 9 ms>  

Figure 22. Example of verbosegc for a concurrent mark collection 

 
Figure 22 shows an example of verbosegc for a collection that was initiated by concurrent 
mark. It is very similar to the AF concurrent collection, except that CON is at the start of 
the lines instead of AF. In this case, the state is 2, meaning that no more work was 
available for the background threads to do. 
 
 
 



4.8.11 verbosegc for a concurrent mark collection with :Xgccon 
<CON[20]: Concurrent collection, (397808/131070464) (3145728/3145728), 5933 ms since last CON or AF>
<GC(26): Bytes Traced =11845976 (Foreground: 4203037+ Background: 7642939) State = 1 >
<GC(26): Card Cleaning Done. Cleaned:4127 (0 skipped). Estimation 3896 (Factor 0.015)>
<GC(26): GC cycle started Fri Oct 11 09:45:32 2002
<GC(26): wait for concurrent tracers: 1 ms>
<GC(26): freed 117639824 bytes, 90% free (121183360/134216192), in 20 ms>
<GC(26): mark: 10 ms, sweep: 10 ms, compact: 0 ms>
<GC(26): In mark: Final dirty Cards scan: 838 cards
<GC(26): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>
<CON[20]: completed in 21 ms>  

Figure 23. Example of verbosegc for a concurrent mark collection with :Xgccon 

 
Figure 23 shows the output for a concurrent mark collection when the :Xgccon parameter 
is specified. As with the AF collection we get the information on the bytes traced and 
card cleaning. An additional line (5) is displayed to show the time that is spent waiting 
for concurrent tracers to complete. 
 



 

4.8.12 verbosegc and resettable 
<TH_AF[8]: Transient heap Allocation Failure. need 64 bytes, 9716 ms since last TH_AF>
<TH_AF[8]: managing TH allocation failure, action=3 (0/4389888)>
<GC(25): need to expand transient mark bits for 4586496-byte heap>
<GC(25): expanded transient mark bits by 3072 to 71672 bytes>
<GC(25): need to expand transient alloc bits for 4586496-byte heap>
<GC(25): expanded transient alloc bits by 3072 to 71672 bytes>
<GC(25): expanded transient heap fully by 196608 to 4586496 bytes>
<TH_AF[8]: completed in 1 ms>  

Figure 24. Example of verbosegc for a Transient heap AF 

 
When running resettable, the JVM has a middleware heap and a transient heap. The 
verbosegc for the transient heap is slightly different, Figure 24 is an example, note the 
use of TH_AF instead of AF. The policy when running resettable is to expand the 
transient heap when an allocation failure occurs, instead of running garbage collection. 
This example shows a successful expansion. 

<TH_AF[11]: Transient heap Allocation Failure. need 32 bytes, 16570 ms since last TH_AF>
<TH_AF[11]: managing TH allocation failure, action=3 (0/4586496)>
<TH_AF[11]: managing TH allocation failure, action=2 (0/4586496)>
<GC(29): GC cycle started Tue Mar 19 14:47:42 2002
<GC(29): freed 402552 bytes from Transient Heap 8% free (402552/4586496) and...>
<GC(29): freed 1456 bytes, 38% free (623304/1636864), in 1285 ms>
<GC(29): mark: 1263 ms, sweep: 22 ms, compact: 0 ms>
<GC(29): refs: soft 0 (age >= 6), weak 0, final 0, phantom 0>
<TH_AF[11]: completed in 1287 ms>  

Figure 25. Example of verbosegc for a Transient Heap AF with unsuccesful expansion 

 
Figure 25 shows what happens when the expansion is not successful. Here a garbage 
collection is necessary. The amount of space that is freed from each of the heaps is 
shown. 
 



5 Messages 
 
JVMST001: Cannot allocate memory in initWorkPackets 
Explanation: Not enough virtual storage was available to allocate the concurrent 
data structures. The call to sysMalloc() failed. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST010: Cannot allocate memory for ACS area 
Explanation: Not enough virtual storage was available to allocate the ACS heap. 
The call to sharedMemoryAlloc() failed. This can happen during the initialization 
or expansion of the ACS heap. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST011: Cannot allocate memory in initConcurrentRAS 
Explanation: Not enough virtual storage was available to allocate the mirrored 
card table. The call to sysMapMem() failed. This can happen only in the debug 
build during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST012: Cannot allocate memory in concurrentInit() 
Explanation: Not enough virtual storage was available to allocate the 
stop_the_world_mon monitor. The call to sysMalloc() failed. This can happen 
only during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST013: Cannot allocate memory in initGcHelpers(2) 
Explanation: Not enough virtual storage was available to allocate the ack_mon 
monitor. The call to sysMalloc() failed. This can happen only during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 



JVMST014: Cannot allocate memory in initConBKHelpers(3) 
Explanation: Not enough virtual storage was available to start a concurrent 
background thread. The call to xmCreateSystemThread() failed. This can happen 
only during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST015: Cannot commit memory in initConcurrentRAS 
Explanation: An error occurred during an attempt to commit memory for the 
mirrored card table. The call to sysCommitMem() failed. This can happen only in 
the debug build during initialization. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 
 
JVMST016: Cannot allocate memory for initial Java heap 
Explanation: Not enough virtual storage was available to allocate the Java heap. 
The call to sysMapMem() failed. This can happen only during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST017: Cannot allocate memory in initializeMarkAndAllocBits(markbits1) 
Explanation: Not enough virtual storage was available to allocate the markbits 
vector. The call to sysMapMem() failed. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST018: Cannot allocate memory for initializeMarkAndAllocBits(allocbits1) 
Explanation: Not enough virtual storage was available to allocate the allocbits 
vector. The call to sysMapMem() failed. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST019: Cannot allocate memory in allocateToMiddlewareHeap 
Explanation: An error occurred during an attempt to commit memory for the 
Java heap. The call to sysCommitMem() failed. This can only happen during 
expansion of the heap. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 
 



JVMST020: Cannot allocate memory in allocateToTransientHeap 
Explanation: An error occurred during an attempt to commit memory for the 
transient heap. The call to sysCommitMem() failed. This can happen during 
initialization or during expansion of the transient heap. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 
 
JVMST021: Cannot allocate memory in initParallelMark(stackEnd 
Explanation: Not enough storage was available in the Java heap to allocate the 
stackEnd object. The call to allocMiddlewareArray() failed. This can happen only 
during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more Java heap storage by increasing the -Xmx value. 
If the problem remains,  contact your IBM service representative. 
 
JVMST022: Cannot allocate memory in initParallelMark(pseudoClass) 
Explanation: Not enough storage was available in the Java heap to allocate the 
pseudoClass object. The call to allocMiddlewareObject() failed. This can happen 
only during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more Java heap storage by increasing the -Xmx value. 
If the problem remains, contact your IBM service representative. 
 
JVMST023: Cannot allocate memory in initializeGCFacade 
Explanation: Not enough virtual storage was available to allocate the verbosegc 
buffer. The call to sysMalloc() failed. This can happen only during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST024: Cannot allocate memory in initWorkPackets 
Explanation: Not enough virtual storage was available to allocate the concurrent 
data structures. The call to sysMalloc() failed. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST025: Cannot allocate memory in icDoseThread 
Explanation: Not enough virtual storage was available to allocate a 
sys_thread_stack_segment. The call to sysCalloc() failed. This can happen only 
during garbage collection. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 



JVMST026: Cannot allocate memory in initializeMiddlewareHeap (not enough 
memory) 
Explanation: An error occurred during an attempt to allocate storage to the 
middleware heap. The call to allocateToMiddlewareHeap() failed. This can 
happen only during initialization. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 
 
JVMST027: Cannot allocate memory for System Heap area in 
allocateSystemHeapMemory 
Explanation: Not enough virtual storage was available to allocate storage for the 
system heap. The call to sharedMemoryAlloc() failed. This can happen during 
initialization or when expanding the system heap. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST028: Cannot commit memory in RASinitShadowHeap 
Explanation: An error occurred during an attempt to commit memory for the 
shadow heap. The call to sysCommitMem() failed. This can happen only during 
initialization when tracing st_shadowheap. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 
 
JVMST029: Cannot allocate memory in jvmpi_scan_thread_roots 
Explanation: Not enough virtual storage was available to allocate a 
sys_thread_stack_segment. The call to sysCalloc() failed. This can happen only 
during garbage collection when jvmpi is running. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST030: Cannot allocate memory in initializeCardTable 
Explanation: Not enough virtual storage was available to allocate the card table. 
The call to sysMapMem() failed. This can happen only during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST031: Cannot commit memory in initializeCardTable 
Explanation: An error occurred during an attempt to commit memory for the card 
table. The call to sysCommitMem() failed. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 



JVMST032: Cannot allocate memory in initializeTransientHeap 
Explanation: An error occurred during an attempt to allocate storage to the 
transient heap. The call to allocateToTransientHeap() failed. This can happen 
only during initialization. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 
 
JVMST033: Cannot allocate memory in initializeMarkAndAllocBits(markbits2) 
Explanation: An error occurred during an attempt to commit memory for the 
markbits vector. The call to sysCommitMem() failed. This can happen only during 
initialization when running with -Xresettable. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 
 
JVMST034: Cannot allocate memory in initializeMarkAndAllocBits(allocbits2) 
Explanation: An error occurred during an attempt to commit memory for the 
allocbits vector. The call to sysCommitMem() failed. This can happen only during 
initialization when running with -Xresettable. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 
 
JVMST035: Cannot allocate memory in initializeMiddlewareHeap (markbits) 
Explanation: An error occurred during an attempt to commit memory for the 
markbits vector. The call to sysCommitMem() failed. This can happen only during 
initialization when -Xresettable is not running. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 
 
JVMST036: Cannot allocate memory in initializeMiddlewareHeap (allocbits) 
Explanation: An error occurred during an attempt to commit memory for the 
allocbits vector. The call to sysCommitMem() failed. This can happen only during 
initialization when -Xresettable is not running. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 
 
JVMST039: Cannot allocate Shared Memory segment in initializeSharedMemory 
Explanation: An error occurred during an attempt to create shared memory. The 
call to xhpiSharedMemoryCreate() failed. This can happen only during 
initialization when -Xjvmset is running. 
System Action: A return code of JNI_ENOMEM will be passed back to the 
JNI_CreateJavaVM call. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 



JVMST040: Cannot initialize Java heap in allocateToMiddlewareHeap 
Explanation: An error occurred during an attempt to commit memory for the 
Java heap. The call to sysCommitMem() failed. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 
 
JVMST042: Cannot allocate memory in initParallelMark(base-Malloc) 
Explanation: Not enough virtual storage was available to allocate the parallel 
mark data structures. The call to sysMalloc() failed. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST043: Cannot allocate memory in concurrentScanThread 
Explanation: Not enough virtual storage was available to allocate a 
sys_thread_stack_segment. The call to sysCalloc() failed. This can happen only 
during concurrent marking. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST044: Cannot allocate memory in concurrentInitLogCleaning 
Explanation: Not enough virtual storage was available to allocate the 
cleanedbits vector. The call to sysMapMem() failed. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST045: Cannot commit memory in concurrentInitLogCleaning 
Explanation: An error occurred during an attempt to commit memory for the 
cleanedbits. The call to sysCommitMem() failed. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 



JVMST046: Cannot allocate storage for standalone jab in 
initializeSharedMemory 
Explanation: Not enough virtual storage was available to allocate the JAB. The 
call to sysCalloc() failed. This can happen only during initialization when -Xjvmset 
is not running. 
System Action: A return code of JNI_ENOMEM is passed back to the 
JNI_CreateJavaVM call. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST047: Cannot allocate memory in initParallelSweep 
Explanation: Not enough virtual storage was available to allocate the parallel 
sweep data structure PBS_ThreadStat. The call to sysMalloc() failed. This can 
happen only during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST048: Could not establish access to shared storage in openSharedMemory 
Explanation: An error occurred during an attempt to access shared memory. 
The call to xhpiSharedMemoryOpen() failed. This can happen only during 
initialization when -Xjvmset is running. 
System Action: A return code of JNI_ENOMEM is passed back to the 
JNI_CreateJavaVM call. 
User Response: Check whether the correct token is being passed in the 
JavaVMOption. If the problem remains, contact your IBM service representative. 
 
JVMST049: Worker and Master JVM versions differ 
Worker JVM version is <version> build type is <build> 
Master JVM version is <version> build type is <build> 
Where version is the JVM version (for example 1.3) and build is the build type 
(DEV, COL, or INT). 
Explanation: A mismatch has occurred between the Master JVM and a Worker 
JVM. This can happen only during initialization when -Xjvmset is running. 
System Action: A return code of JNI_ERR is passed back to the 
JNI_CreateJavaVM call. 
User Response: Ensure that the Master and all Worker JVMs are at the same 
version level, and all are of the same build type. If the problem remains, contact 
your IBM service Representative. 
 
JVMST050: Cannot allocate memory for initial Java heap 
Explanation: An error occurred during an attempt to query memory availability. 
The call to DosQuerySysInfo() failed. This can happen only during initialization 
on OS/2. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 



JVMST051: Cannot allocate memory for initial Java heap 
Explanation: Not enough virtual storage was available to allocate the Java heap. 
The call to sysMapMem() failed. This can happen only during initialization on 
OS/2. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST052: Cannot allocate memory for initial Java heap 
Explanation: Not enough virtual storage was available to allocate the Java heap. 
The call to sysMapMem() failed. This can happen only during initialization on 
OS/2 and when JAVA_HIGH_MEMORY has been specified. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST053: Cannot allocate memory in initParallelMark(legacy list) 
Explanation: Not enough virtual storage was available to allocate the legacyList. 
The call to sysMalloc() failed. This can happen only during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST054: Cannot allocate memory in initParallelMark(nursery bits) 
Explanation: Not enough virtual storage was available to allocate the nurserybits 
vector. The call to sysMalloc() failed. This can happen only during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
 
JVMST055: Cannot allocate memory in initParallelSweep 
Explanation: Not enough virtual storage was available to allocate the parallel 
sweep data structure pbs_scoreboard. The call to sysMalloc() failed. This can  
happen only during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST056: Cannot allocate memory in initConBKHelpers(1) 
Explanation: Not enough virtual storage was available to allocate the 
bk_activation_mon monitor. The call to sysMalloc() failed. This can happen only 
during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 



JVMST057: Cannot allocate memory in initGcHelpers(1) 
Explanation: Not enough virtual storage was available to allocate the 
request_mon monitor. The call to sysMalloc() failed. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST058: Cannot allocate memory in initGcHelpers(3) 
Explanation: Not enough virtual storage was available to start a gcHelper 
thread. The call to xmCreateSpecialSystemThread() failed. This can happen only 
during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST059: Cannot allocate memory in scanThread 
Explanation: Not enough virtual storage was available to allocate a 
sys_thread_stack_segment. The call to sysCalloc() failed. This can happen only 
during garbage collection. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST060: Cannot allocate memory in concurrentInit 
Explanation: Not enough virtual storage was available to allocate a backup 
thread in concurrent bk_threads. The call to sysCalloc() failed. This can happen 
only during garbage collection. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST061: Cannot allocate memory in concurrentInit 
Explanation: Not enough virtual storage was available to allocate the concurrent 
tracer_mon monitor. The call to sysMalloc() failed. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST062: Cannot allocate memory in initializeFRBits 
Explanation: Not enough virtual storage was available to allocate the FRBits. 
The call to sysMapMem() failed. This can happen only during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 



JVMST063: Cannot allocate memory in initializeFRBits 
Explanation: Not enough virtual storage was available to commit the FRBits in 
resettable code. The call to sysCommitMem() failed. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 
 
JVMST064: Cannot allocate memory in initializeMiddlewareHeap 
Explanation: Not enough virtual storage was available to commit the FRBits in 
nonresettable code. The call to sysCommitMem() failed. This can happen only 
during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative.  
 
JVMST065: Cannot allocate memory for break tables in 
initializeIncrementalCompaction 
Explanation: Not enough virtual storage was available to create the break tables 
for incremental compaction. The call to sysMalloc() failed. This can happen only 
during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST066: Exception (sysGetExceptionCode()) received during 
openSharedMemory with token(token) 
Explanation: Cannot access shared storage  that is defined by the token that 
was returned by xhpiSharedMemoryOpen. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Check whether the token that is being passed by -Xjvmset is 
valid. If the problem remains, contact your IBM service representative. 
 
JVMST067: Invalid method_type detected in heap allocation(allocObject) 
Explanation: The class type that was detected during object allocation was not 
Middleware, Primordial, or Application. 
System Action: The JVM is terminated. 
User Response: If the problem remains, contact your IBM service 
representative. 
 
JVMST068: Invalid method_type detected in heap allocation (allocArray) 
Explanation: The class type that was detected during array allocation was not 
Middleware or Application.  
System Action: The JVM is terminated. 
User Response: If the problem remains, contact your IBM service 
representative. 



JVMST069: Invalid method_type detected in heap allocation (allocConextArray) 
Explanation: The class type that was detected during context array allocation 
was not Middleware or Application. 
System Action: The JVM is terminated. 
User Response: If the problem remains, contact your IBM service 
representative. 
 
JVMST070: Invalid method_type detected in heap allocation (allocConextObject) 
Explanation: The class type that was detected during context object allocation 
was not Middleware or Application. 
System Action: The JVM is terminated. 
User Response: If the problem remains,  contact your IBM service 
representative. 
 
JVMST080: verbose:gc is enabled 
Explanation: Informational message. 
System Action: None. 
User Response: None. 
 
JVMST081: file open failed for verbose:gc output file 
Explanation: Cannot open the verbosegc log file. 
System Action: Verbosegc log output will be written to the stderr log. 
User Response: Check whether the entered file name is valid and whether open 
is a valid operation on this file. 
 
JVMST082: -verbose:gc output will be written to (vgclogName) 
Explanation: Informational message to display the location of the verbosegc 
output file. 
System Action: None. 
User Response: None. 
 
JVMST083: Exception occurred while calculating freeList size for JVMMI 
Explanation: Exception occurred while the jvmmiOutOfMemoryEvent was being 
set up. 
System Action: The JVM is terminated. 
User Response: If the problem remains, contact your IBM service 
representative. 
 
JVMST084: Cannot allocate memory in stInit for segment_info 
Explanation: Not enough virtual storage was available to create the 
sys_thread_stack_segment. The call to sysCalloc() failed. This can happen only 
during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 



JVMST085: Cannot suspend threads in gc0 
Explanation: An attempt by xmSuspendAllThreads to lock all threads before 
garbage collection   was unsuccessful. 
System Action: The JVM is terminated. 
User Response: If the problem remains, contact your IBM service 
representative. 
 
JVMST088: Cannot allocate memory in “initialiseSCCardTable” 
Explanation: Not enough virtual storage was available to allocate the shared 
class card table. The call to sysMapMem() failed. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST089: Cannot commit memory in “initialiseSCCardTable” 
Explanation: An error occurred during an attempt to commit memory for the 
shared class card table. The call to sysCommitMem() failed. This can happen 
only during initialization. 
System Action: The JVM is terminated. 
User Response: Contact your IBM service representative. 
 
JVMST090: Incorrect usage of -Xverbosegclog 
Explanation: The parameters that were passed with -Xverbosegclog are 
incorrect. 
System Action: The JVM is terminated. 
User Response: Review documentation on use of -Xverbosegclog. If the 
problem remains, contact your IBM service representative. 
 
JVMST091: Incorrect usage of -Xverbosegclog 
Explanation: The parameters that were passed with -Xverbosegclog are 
incorrect. 
System Action: The JVM is terminated. 
User Response: Review documentation on use of -Xverbosegclog. If the 
problem remains, contact your IBM service representative. 
 
JVMST092: Cannot allocate memory in initializeGCFacade 
Explanation: Not enough virtual storage was available to allocate the verbosegc 
trace buffer. The call to sysMalloc() failed. This can happen only during 
initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 



JVMST093: file open failed for verbose:gc output file 
Explanation: Cannot open the verbosegc log file. 
System Action: Verbosegc log output will be written to the stderr log. 
User Response: Check whether the entered file name is valid and whether open 
is a valid operation on this file. 
 
JVMST094: file open failed for verbose:gc output file 
Explanation: Cannot open the verbosegc log file. 
System Action: Verbosegc log output will be written to the stderr log. 
User Response: Check whether the entered file name is valid and whether open 
is a valid operation on this file. 
 
JVMST095: Incorrect usage of -Xverbosegclog 
Explanation: The parameters that were passed with -Xverbosegclog are 
incorrect. 
System Action: The JVM is terminated. 
User Response: Review documentation on use of -Xverbosegclog. If the 
problem remains, contact your IBM service representative. 
 
JVMST096: Out of memory in setVerbosegcRedirectionFormatScreen 
Explanation: Not enough virtual storage was available to allocate the verbosegc 
buffer. The call to sysMalloc() failed. This can happen only during initialization. 
System Action: The JVM is terminated. 
User Response: Allocate more virtual storage to the JVM region. If the problem 
remains, contact your IBM service representative. 
 
JVMST097: Concurrent GC is disabled 
Explanation: An attempt has been made to use the dynamic switching interface 
to turn on concurrent verbosegc when concurrent gc is not enabled. 
System Action: The JVM is terminated. 
User Response: Review the dynamic switching interface 
 



6 Command Line Parameters 
 
The following list contains all the command line parameters related to allocation and 
garbage collection. 
 
-verbosegc 
-verbose:gc 

Prints garbage collection information.  The format for the generated information is not 
architected and therefore varies from platform to platform and release to release. 
 
-verbose:Xgccon 
 Prints garbage-collection information, as supplied by -verbose:gc, and card-cleaning 
information. This can be set on only if -Xgcpolicy is set to optavgpause.

  
 -Xverbosegclog:<path to file><filename> 

 
Causes verbosegc output to be written to the specified file. If the file cannot be found, 
output is redirected to stderr. 

 
-Xverbosegclog:<path to file><filename, X, Y> 

 
X and Y are integers. This option works like above but, in addition, the verbosegc output 
is redirected to Y files, each containing X gc cycles-worth of verbosegc output. 
 

Note: 
The environment variable IBM_JVMST_VERBOSEGC_LOG has been removed from 
release 1.4.1 onward.  
-Xcompactgc 
 
Compact the heap every garbage collection cycle.  The default is false. 
 
-Xdisableexplicitgc 
 
Turns Java application calls to java.lang.System.gc() into no-ops. 
  
Many applications in the field still make an excessive number of explicit calls to 
System.gc() to request garbage collection. In some cases, this can degrade performance 
time through premature garbage collection and compactions, but it is not always possible 
to remove the calls at source. 
 
To allow the JVM to ignore these garbage collector suggestions, -Xdisableexplicitgc has 
been introduced. This would be used by system administrators with applications that 
show benefits with the new, nondefault setting. 

GB084529
Filename must contain a "#" (hash symbol), which is substituted with a generation identifier, starting at 1.

GB084529



 
-Xdisableexplicitgc should be used only in production where testing has shown this to be 
beneficial; for example, from performance testing in conjunction with verbose:gc output. 
The new flag should not be set when running: 
 

•  The zSeries JVM with CICS in resettable mode or DB/2 stored procedures 
•  Performance profilers that make explicit garbage collection calls to detect 

object freeing and memory leaks 
•  Performance benchmarks where explicit garbage collection calls are made 

between measurement intervals 
 
-Xgcpolicy:<optthruput | optavgpause> 
 
Setting gcpolicy to optthruput disables concurrent mark. Users who do not have pause 
time problems (as seen by erratic application response times) should get the best 
throughput with this option. Optthruput is the default setting. 
 
Setting gcpolicy to optavgpause enables concurrent mark with its default values. Users 
who are having problems with erratic application response times caused by normal 
garbage collections can reduce those problems at the cost of some throughput when 
running with the optavgpause option. 
     
-Xgcthreads 
 
Sets the total number of threads that are used for garbage collection. On a system with N 
processors, the default setting for -Xgcthreads is 1 when in resettable mode, and N when 
not in resettable mode.   
 
-Xinitacsh<size> 
 
Sets the initial size of the application-class system heap. This option is available only in 
the resettable JVM. Classes that are in this heap exist for the lifetime of the JVM. They 
are reset during a ResetJavaVM(), and so are serially reusable by applications that are 
running in the JVM. Only one application-class system heap exists per Persistent 
Reusable JVM. In nonresettable mode, this option is ignored.  
Example: -Xinitacsh256k  
Default: 128 KB on 32-bit architecture, and 8 MB on 64-bit architecture. 
 
-Xinitsh<size> 
 
Sets the initial size of the system heap. Classes that are in this heap exist for the lifetime 
of the JVM. The system heap is never subjected to garbage collection. The maximum size 
of the system heap is unbounded.  
Example: -Xinitsh256k  
Default: 128 KB on 32-bit architecture, and 8 MB on 64-bit architecture. 
 



-Xjvmset<size> 
 
Creates a master JVM. An optional size in megabytes can be specified to set the total size 
of the shared memory segment. The default is 1 MB. When JNI_CreateJavaVM( )returns 
successfully, the “extrainfo” field of the JavaVMOption contains the token that is to be 
passed to each worker. 
 
The -Xresettable option must be used with this option when starting a master JVM. 

 
-Xjvmset 
 
Creates a worker JVM. The “extrainfo” field of the JavaVMOption must contain the 
token that is returned on the -Xjvmset option that was used to create the master JVM. 
 
-Xmaxe<size> 
 
Specifies the maximum expansion size of the heap.  The default is 0. In resettable  
mode,this sets the a maximum expansion size of  <size> + 2 for the middleware and  
transient heaps.  
 
-Xmaxf<number> 
 
This is a floating point number between 0 and 1 that specifies the maximum percentage  
of free space in the heap. The default is 0.6, or 60%.  When this value is set to 0, heap  
contraction is a constant activity.  When this value is set to 1, the heap never contracts. 
In resettable mode, this parameter applies to the middleware heap only. 
 
-Xmine<size> 
 
Specifies the minimum expansion size of the heap. The default is 1 MB.  In resettable  
mode, this option sets a minimum expansion size of <size> + 2 for the middleware and  
transient heaps.   
 
-Xminf<number>  
 
This is a floating point number between 0 and 1 that specifies the minimum free heap size  
percentage. The heap grows if the free space is below the specified amount.  In resettable  
mode, this option specifies the minimum percentage of free space for the middleware and  
transient heaps.  The default is 0.3 (that is 30%). 
 
-Xms<size> 

 
 Sets the initial size of the heap.  If this option is not specified, it defaults as follows: 

Windows, AIX, and Linux: 4 MB  
 OS/390: 1 MB 

 



 
-Xmx<size> 

 
Sets the maximum size of the heap.  In resettable mode, this option sets the maximum  
size of the combined middleware and transient heaps. The middleware heap grows from  
the bottom of this region, and the transient heap grows from the top of the region.  If this  
option is not specified, it defaults as follows: 

Windows: Half the real storage with a minimum of 16 MB and a maximum of 2 
GB-1. 

 OS/390 and AIX: 64 MB 
 Linux: Half the real storage with a minimum of 16 MB and a maximum of 512 

MB-1. 
 
 
-Xnocompactgc 
 
Never compact the heap. Default is “false”.  
 
-Xnopartialcompactgc 
 
Never run an Incremental Compaction. Default is “false”. 
 
-Xpartialcompactgc 
 
Run an Incremental Compaction every garbage collection cycle. Default is “false”. 
 
-Xresettable 
 
Specifies that this instance of the JVM can support the resettable JVM. 
 
 



Appendix A. Notices 
 
This information was developed for products and services offered in the U.S.A. 
IBM may not offer the products, services, or features discussed in this document in 
other countries. Consult your local IBM representative for information on the 
products and services currently available in your area. Any reference to an IBM 
product, program, or service is not intended to state or imply that only that IBM 
product, program, or service may be used. Any functionally equivalent product, 
program, or service that does not infringe any IBM intellectual property right may 
be used instead. However, it is the user’s responsibility to evaluate and verify the 
operation of any non-IBM product, program, or service. 
 
IBM may have patents or pending patent applications covering subject matter 
described in this document. The furnishing of this document does not give you 
any license to these patents. You can send license inquiries, in writing, to: 
 
IBM Director of Licensing 
IBM Corporation 
North Castle Drive 
Armonk, NY 10504-1785 
U.S.A. 
 
For license inquiries regarding double-byte (DBCS) information, contact the IBM 
Intellectual Property Department in your country or send inquiries, in writing, to: 
 
IBM World Trade Asia Corporation 
Licensing 
2-31 Roppongi 3-chome, Minato-ku 
Tokyo 106-0032, Japan 
 
The following paragraph does not apply to the United Kingdom or any other 
country where such provisions are inconsistent with local law: 
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS 
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER 
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS 
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or 
implied warranties in certain transactions, therefore, this statement may not apply 
to you. 
 
This information could include technical inaccuracies or typographical errors. 
Changes are periodically made to the information herein; these changes will be 
incorporated in new editions of the publication. IBM may make improvements 
and/or changes in the product(s) and/or the program(s) described in this 
publication at any time without notice. 
 
Any references in this information to non-IBM Web sites are provided for 
convenience only and do not in any manner serve as an endorsement of those Web 
sites. The materials at those Web sites are not part of the materials for this IBM 
product and use of those Web sites is at your own risk. 
 
IBM may use or distribute any of the information you supply in any way it 
believes appropriate without incurring any obligation to you. 
 
Licensees of this program who wish to have information about it for the purpose 



of enabling: (i) the exchange of information between independently created 
programs and other programs (including this one) and (ii) the mutual use of the 
information which has been exchanged, should contact IBM United Kingdom 
Laboratories, MP146, Hursley Park, Winchester, Hampshire, SO21 2JN, United 
Kingdom. Such information may be available, subject to appropriate terms and 
conditions, including in some cases, payment of a fee. 
The licensed program described in this information and all licensed material 
available for it are provided by IBM under terms of the IBM Customer Agreement, 
IBM International Program License Agreement, or any equivalent agreement 
between us. 
 
Information concerning non-IBM products was obtained from the suppliers of 
those products, their published announcements or other publicly available sources. 
IBM has not tested those products and cannot confirm the accuracy of 
performance, compatibility or any other claims related to non-IBM products. 
Questions on the capabilities of non-IBM products should be addressed to the 
suppliers of those products. 
 
If you are viewing this information softcopy, the photographs and color 
illustrations may not appear. 
 
Trademarks 
 
The following terms are trademarks or registered trademarks of International 
Business Machines Corporation in the United States, or other countries, or both. 
 
OS/390 IBM 
AIX z/OS 
 
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the 
United States, other countries, or both. 
 
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of 
Microsoft Corporation in the United States, other countries, or both. 
 
Other company, product and service names may be trademarks or service marks of 
others. 




