SCA Service Component Architecture

Building Your First Application - Simplified BigBank

SCA Version 0.9, November 2005

Technical Contacts: Michael Beisiegel IBM Corporation
Henning Blohm SAP AG
Dave Booz IBM Corporation
Jean-Jacques Dubray SAP AG
Mike Edwards IBM Corporation
Anish Karmarkar Oracle Corporation
Jim Marino BEA Systems, Inc.
Martin Nally IBM Corporation
Greg Pavlik Oracle Corporation
Michael Rowley BEA Systems, Inc.
Ken Tam BEA Systems, Inc.

Lance Waterman Sybase, Inc.

SCA Service Component Architecture

Copyright Notice

© Copyright BEA Systems, Inc., International Business Machines Corp., SAP AG, Sybase, Inc. 2005. All rights
reserved.

No part of this document may be reproduced or transmitted in any form without written permission
from BEA Systems, Inc., International Business Machines Corp., SAP AG., Sybase, Inc. (collectively
the “Authors”).

This is a preliminary document and may be changed substantially over time. The information
contained in this document represents the current view of the Authors on the issues discussed as of
the date of publication and should not be interpreted to be a commitment on the part of the Authors.
All data as well as any statements regarding future direction and intent are subject to change and
withdrawal without notice. This information could include technical inaccuracies or typographical
errors.

The presentation, distribution or other dissemination of the information contained in this document is
not a license, either express or implied, to any intellectual property owned or controlled by the
Authors and\or any other third party. The Authors and\or any other third party may have patents,
patent applications, trademarks, copyrights, or other intellectual property rights covering subject
matter in this document. The furnishing of this document does not give you any license to the
Authors’ or any other third party's patents, trademarks, copyrights, or other intellectual property.

The information provided in this document is distributed “AS 1S” AND WITH ALL FAULTS, without any
warranty, express or implied. The Authors EXPRESSLY DISCLAIM ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR TITLE. The
Authors shall have no responsibility to update this information.

IN NO EVENT WILL THE AUTHORS BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR
DSTRIBUTION OF THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE
POSSIBILITY OF SUCH DAMAGES.

IBM is a registered trademark of International Business Machines Corporation in the United States,
other countries, or both.

BEA is a registered trademark of BEA Systems, Inc.
SAP is a registered trademark of SAP AG.

Siebel is a registered trademark of Sybase, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

SCA Sample Application ii November 2005

SCA Service Component Architecture

Table of Contents

(@07 Y42 T 1 01t 1[0 o = ii
1. Building Your First AppliCation ...ttt e eaaes 1
1.1. 0) 4o o L8 ox 1 o] o PN PP 1
1.2. The Simplified BigBanK SCENAIIO ..ottt et ettt et e e e e e e e e eeaaannes 2
1.3. (DTSN Lo 0] o o =T o 1 S 4
1.3.1. Creating the bigbank.accountmodule ..o i i aaaas 4
1.3.2. Creating the bigbank.webclientmoduleooiiiiiiiiii e e 19
1.4. L= 0] [0/ 0 0 = 0 1 A 31
1.4.1. Creating the bigbank.accountsubSyStemMcoviiiiiiii i e e ea s 31
1.4.2. Creating the bigbank.webclientsSubsystem.........cooi i e 31
1.4.3. Deployment of Modules and SUDSYStEMS ... e 33

2. = [T 1= T 34

SCA Sample Application iii November 2005

SCA Service Component Architecture

1. Building Your First Application

1.1. Introduction

The purpose of this sample is to illustrate key concepts involved in developing an SCA-based
application. As SCA encompasses a broad set of specifications for building and deploying service-
oriented applications, the intent of this sample is to provide an introductory overview that will be
built upon in subsequent samples. Specifically, this sample demonstrates:

e Creating component implementations that provide remotable services in the Java™
language. Remotable services can be published to remote clients over various protocol
bindings, e.g. as web services.

e Creating component implementations that provide local services in Java. Local
services implement internal application business logic such as tracking user state and are
not exposed remotely.

e Creating component implementations that have configuration properties and
service references to other services

e Creating components that use and configure the properties and references of
component implementations

e Creating entry points to publish remotable services via a Web Service binding.
e Creating external services to consume remotable services via a Web Service binding

¢ Assembling implementation, components, entry points and external service into
modules.

e Creating a module and all of its artifacts as part of a web application to show a front-
end access to SCA services

e Configuring and deploying a module into a SCA system using subsystem configurations.

The target audience of this sample is developers and architects responsible for building
applications that want to gain a basic understanding of SCA. Since Java was chosen as the
primary implementation technology for the current sample, familiarity with that language is
assumed. In addition, the sample assumes a basic understanding of web applications and web
services. For an overview of SCA and its design goals, readers are recommended to consult the
SCA Whitepaper [5].

SCA Sample Application 1 November 2005

SCA Service Component Architecture

1.2. The Simplified BigBank Scenario

BigBank is a fictitious financial institution that provides both commercial and consumer-oriented
services. BigBank provides customers the ability to view account balances, transfer funds, and
make loan applications.

The current sample details the process of building a service for viewing customer account
balance (i.e. checking account, savings account, and stock account) and activity that is accessed
by a web application and web service client.

In order to gain maximum reusability and flexibility, BigBank has chosen to partition their
application into two modules, an account module for accessing client information in a legacy
system, and a web front-end module. By partitioning the application into separate modules,
BigBank is able to develop and evolve services independently as well as provide for re-use. In
this case, the account service will be used by the web front-end as well as by web service clients,
such as desktop money-management applications.

The following figure shows the account module.

Account
DataService
Component

Account
Service
Component

Account
Service

StockQuote
Service

Figure 1: Account Module diagram

The module bigbank.accountmodule exposes the account service for accessing account
information in a legacy system using web services protocols. It contains:

e The account service component, which provide the remotable account service and
aggregates the report on the customers checking, savings, and stock account

e The account data service component which takes the role of the legacy system, and
provides checking account, savings account, and stock account information to the account
service

SCA Sample Application 2 November 2005

SCA Service Component Architecture

¢ The external stock quote service which provides current quotes on stocks to the
account service

e The entry point account service that publishes the account service over a web service
binding for access by the web client module and other remote web services clients.

e The assembly that configures and wires all the elements of the module.

The following figure shows the web front-end module:

Login
Service

Component
Login.html B

Profile

LoginServlet . Service
s Component

LoginBarrier _.
Tag

Service
Tag
Account
Service

P
AccountService
Tag -

Figure 2: Web Front-end Module

The module bigbank.webclientmodule provides browser-based functionality for logging into
the system and accessing account information. Specifically, the module contains:

e The login HTML file, the login servlet, and the account summary JSP for processing web
requests and displaying account information. Note that in a more elaborate example, a Ul
framework such as JSF or Struts could be used to add additional functionality.

e The login service and profile service components that provide local services for
managing user state

e The external account service for accessing the remote account service of the
bigbank.accountmodule.

e The assembly that configures and wires all the elements of the module.

SCA Sample Application 3 November 2005

SCA Service Component Architecture

1.3. Development

In the following we describe the development of two SCA modules. The first is a pure SCA
module, the second shows the development of an SCA module as part of a web application.

1.3.1. Creating the bigbank.accountmodule

In this step you learn how to create an SCA module. A module is represented by a folder in
the file system with an sca.module file at the folder root.

The SCA module that you build in this step is the bigbank.acountmodule. This is done by
creating a folder named bigbank.accountmodule in the file system with an sca.module file at the
folder root. The following shows the bigbank.accountmodule contents after this step is complete.

--1=% bigbank.accountmodule
X sca.module

The following snippet shows the contents of the sca.module file. At this point it contains the top
level module element with the name attribute set to the name of the module.

<?xml version="1.0" encoding=""ASCII1"?>
<module xmlns="http://www.osoa.org/xmlns/sca/0.9"

name="bigbank.accountmodule" >

</module>

1.3.1.1. Account Data Service Implementation

In this step you learn how to create an SCA implementation. Implementations provide
services, and have references to services they require.

The implementation that you create in this step is the AccountDataServicelmpl. It offers a
service providing an AccountDataService interface to clients in the bigbank.accountmodule.
The AccounDataService allows its clients to retrieve account information for the three different

accounts (i.e. CheckingAccount, SavingsAccount, StockAccount) that a customer of BigBank can
have.

In this step you create a subfolder named services/accountdata for all the files that make the
AccountDataServicelmpl implementation. The following shows the bigbank.accountmodule
contents after this step is completed.

SCA Sample Application 4 November 2005

SCA Service Component Architecture

--1=¢ bigbank.accountmadule
-} services.accountdata
+ m AccountDataService.java
+-[J] AccountDataServiceImpl.java
[J] CheckingAccount.java
[J] savingsAccount.java
[J] StockAccount.java
sca.module

=] [[F

The next snippet shows the AccountDataService Java interface. It has the three methods
getCheckingAccount(), getSavingsAccount(), and getStockAccount() that given a customer
identification return the respective account objects.

package services.accountdata;
public interface AccountDataService {
CheckingAccount getCheckingAccount(String customerlD);

SavingsAccount getSavingsAccount(String customerliD);
StockAccount getStockAccount(String customerlD);

}

The next snippet shows the CheckingAccount Java class

package services.accountdata;
public class CheckingAccount {

private String accountNumber;
private float balance;

public String getAccountNumber() {
return accountNumber;

public void setAccountNumber(String accountNumber) {
this.accountNumber = accountNumber;

}
public float getBalance() {
return balance;

public void setBalance(float balance) {
this._balance = balance;
b

The next snippet shows the SavingsAccount Java class.

package services.accountdata;
public class SavingsAccount {

private String accountNumber;
private float balance;

SCA Sample Application 5 November 2005

SCA Service Component Architecture

public String getAccountNumber() {
return accountNumber;

public void setAccountNumber(String accountNumber) {
this.accountNumber = accountNumber;

}
public float getBalance() {
return balance;

public void setBalance(float balance) {
this.balance = balance;
3

The next snippet shows the StockAccount Java class.

package services.accountdata;
public class StockAccount {

private String accountNumber;
private String symbol;
private int quantity;

public String getAccountNumber() {
return accountNumber;

public void setAccountNumber(String accountNumber) {
this.accountNumber = accountNumber;

3
public int getQuantity() {
return quantity;

public void setQuantity(int quantity) {
this.quantity = quantity;

}
public String getSymbol() {
return symbol;

}

public void setSymbol(String symbol) {
this.symbol = symbol;

}

In the next snippet you see the AccountDataServicelmpl Java implementation class which
implements the former AccountDataService interface. As you can see creating SCA
implementations in Java involves specifying Java interfaces and simple Java classes (i.e. plain old
Java objects, or POJO’s). The AccountDataServicelmpl uses the optional @Service annotation to
declare the service and its interface provided by the implementation.

package services.accountdata;

@Service(AccountDataService.class)
public class AccountDataServicelmpl implements AccountDataService {

public CheckingAccount getCheckingAccount(String customerlID) {
CheckingAccount checkingAccount = new CheckingAccount();

checkingAccount.setAccountNumber (customer ID+"_"'+"CHA12345");
checkingAccount.setBalance(1500.0fF);

SCA Sample Application 6 November 2005

SCA Service Component Architecture

return checkingAccount;

3
public SavingsAccount getSavingsAccount(String customeriD) {

SavingsAccount savingsAccount = new SavingsAccount();
savingsAccount.setAccountNumber (customer ID+"_"+"SAA12345");
savingsAccount.setBalance(1500.0fF);

return savingsAccount;

public StockAccount getStockAccount(String customerlID) {

StockAccount stockAccount = new StockAccount();
stockAccount.setAccountNumber (customer ID+"_"+"STA12345™);
stockAccount.setSymbol (""IBM™);
stockAccount.setQuantity(100);

return stockAccount;

The SCA Client and Implementation Model specification for Java defines a set of Java annotations
that allow the POJO implementer to declare all the configurable aspects (i.e. services,
references, and properties) of its implementation. SCA also defines a way to specify configurable
aspects of an implementation through an optional XML-based side file, termed a component type
file. In the case of the former implementation, the configurable aspects of the component can be
reflected from the implementation and the component type file does not need to be authored.

The following would be the resulting component type from reflecting the
AccountDataServicelmpl.

<?xml version="1.0" encoding=""ASCII1"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/0.9">

<service name="'AccountDataService">

<interface.java interface="services.accountdata.AccountDataService"/>
</service>

</componentType>

1.3.1.2. Account Data Service Component

In this step you learn how to create an SCA component. Components use and configure
implementations, e.g. you configure the references and properties of the implementation. You
configure references by wiring them to services provided by other components or external
service. The component that you create here does not have any references and properties but
we will see that configuration aspect later on for other components. The component that you
create here provides a service that can be used by others in the same module

The component that you create in this step is the AccountDataServiceComponent that is
implemented by the AccountDataServicelmpl implementation that you created in the previous
step.

SCA Sample Application 7 November 2005

SCA Service Component Architecture

SCA components are created in sca.module files. The SCA component is represented by a
component element in the sca.module file. The component element has a name attribute
specifying the name of the component. An implementation element nested in the component
element specifies the implementation, e.g. the Java class implementing the component.

In the next snippet the contents of the sca.module file of the bigbank.accountmodule is shown
containing the AccountDataServiceComponent. Nested in the component element is the
implementation element specifying the AccountDataServicelmpl Java class.

<?xml version="1.0" encoding=""ASCII1"?>
<module xmlIns="http://www.osoa.org/xmlns/sca/0.9"

name="bigbank.accountmodule" >

<component name="AccountDataServiceComponent'>
<implementation.java class="services.accountdata.AccountDataServicelmpl"/>
</component>

</module>

1.3.1.3. StockQuote Web Service External Service

In this step you create an SCA external service, in this case one that offers access to a Web
service.

The external service that you create in this step is the StockQuoteService. It offers a service
providing a StockQuoteService interface to clients in the bigbank.accountmodule.

You first create a subfolder named services/stockquote for all the files needed by the
StockQuoteService external service. The following shows the bigbank.accountmodule contents
after this step is completed.

=-1=% bighank.accountmodule
+- 1 services.accountdata
--H3 services.stockquote
+-[J] StockQuoteService.java
AP StockQuoteService.wsdl
H| sca.module

The next snippet shows the StockQuoteService.wsdl of the service that will be offered by the
external service. In our scenario the assumption is that this was provided to you by a business
partner.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmIns:soap="http://schemas.xmlsoap.org/wsdl/soap/*
xmiIns:tns="http://www.quickstockquote.com/StockQuoteService/"
xmIns:wsdl="http://schemas.xmlsoap.org/wsdl/"

SCA Sample Application 8 November 2005

SCA Service Component Architecture

xmlns:xsd=""http://www.w3.0rg/2001/XMLSchema"*
targetNamespace=""http://www.quickstockquote.com/StockQuoteService/"

name=""StockQuoteService">

<wsdl :types>
<xsd:schema
targetNamespace="http://www.quickstockquote.com/StockQuoteService/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"">

<xsd:element name="'getQuote">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="'symbol" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="getQuoteResponse’>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="'quote" type="'xsd:float'/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</wsdl :types>
<wsdl :message name="‘getQuote’>
<wsdl:part element="tns:getQuote' name="getQuote" />
</wsdl :message>
<wsdl :message name="'getQuoteResponse’>
<wsdl:part element=""tns:getQuoteResponse’ name='‘getQuoteResponse' />
</wsdl :message>
<wsdl:portType name="StockQuoteService'>
<wsdl :operation name="getQuote'>
<wsdl:input message="tns:getQuote" />
<wsdl :output message='"tns:getQuoteResponse" />
</wsdl :operation>
</wsdl :portType>
<wsdl:binding name="StockQuoteServiceSOAP"
type=""tns:StockQuoteService'">
<soap:binding style="document” transport="http://schemas.xmlsoap.org/soap/http"” />
<wsdl :operation name="getQuote">
<soap:operation
soapAction="http://www.quickstockquote.com/StockQuoteService/getQuote" />
<wsdl : input>
<soap:body use="literal" />
</wsdl: input>
<wsdl :output>
<soap:body use="literal” />
</wsdl :output>
</wsdl :operation>
</wsdl:binding>
<wsdl :service name="StockQuoteService'>
<wsdl:port binding="tns:StockQuoteServiceSOAP" name="StockQuoteServiceSOAP">
<soap:address location="http://www.quickstockquote.com/services/StockQuoteService'/>
</wsdl :port>
</wsdl:service>
</wsdl :definitions>

Since you want to deal with static Java types when using the StockQuoteService you have to
create the corresponding Java interfaces for the wsdl portType, note that an SCA runtime should
provide command line type tools to generate the static Java types, here we do it by hand.

The StockQuoteService WSDL portType uses the document literal wrapped style of data
encoding. The next snippet shows the StockQuoteService Java interface derived from it.

SCA Sample Application 9 November 2005

SCA Service Component Architecture

package services.stockquote;
public interface StockQuoteService {

public float getQuote(String symbol);

Next you create the external service named StockQuoteService in the sca.module file of the
bigbank.accountmodule.

In the next snippet the contents of the sca.module file is shown containing the
StockQuoteService external service. A Web service binding element is specified naming the
StockQuoteServiceSOAP port from the StockQuoteService.wsdl file that we created earlier.

<?xml version="1.0" encoding="ASCII"?>
<module xmlns="http://www.osoa.org/xmlns/scas/0.9"

name="bigbank.accountmodule" >

<component name="AccountDataServiceComponent'>
<implementation.java class="services.accountdata.AccountDataServicelmpl*/>
</component>

<externalService name="StockQuoteService'>
<interface.java interface="services.stockquote.StockQuoteService'/>
<binding.ws port="http://www.quickstockquote.com/StockQuoteService#
wsdl .endpoint(StockQuoteService/StockQuoteServiceSOAP)" />
</externalService>

</module>

1.3.1.4. Account Service Implementation
In this step you will create another SCA implementation. This implementation uses more SCA
concepts then the one we create before, besides providing a service it also makes use of other
services via references and is itself configurable through a property.

The implementation that you create in this step is the AccountServicelmpl. It offers a service
providing a AccountService interface to clients in the bigbank.accountmodule. The
implementation references two other services one providing an AccountDataService interface,
and the other a StockQuoteService interface.

In this step you create a subfolder named services/account for all the files that make the
AccountServicelmpl implementation. The following shows the bigbank.accountmodule contents
after this step is completed.

SCA Sample Application 10 November 2005

SCA Service Component Architecture

--1=% bigbank.accountmodule

-4 services.account
+-[J] AccountReport.java
+-[J] AccountService.java
+-[J] AccountServiceImpl.java
+-[J] AccountSummary.java

+- 1 services.accountdata

+ -1 services.stockquote
¥ sca.module

The next snippet shows the AccountService Java interface. It has a getAccountReport() method
that given a customer identifier returns an AccountReport object. Since you want to be able to
remote the service typed by the AccountService interface as a Web service you have to define
the interface as remotable. Defining a remotable Java interface requires the following:

e The interface has to be annotated with an @Remotable annotation

e Complex data types exchanged via remotable service interfaces must be compatible with
the marshalling technology that is used by any binding that is used for the service. For
example, if the service is going to be exposed using the standard web service binding,
then the parameters must be Service Data Objects (SDOs) 2.0_[1] or JAXB [2] types.
Since the intend is to publish the AccountService using a Web service binding, you define
AccountReport and AccountSummary as Java interfaces both using SDO annotations

package services.account;
import org.osoa.sca.annotations.Remotable;

@Remotable
public interface AccountService{

public AccountReport getAccountReport(String customerlD);

The next snippet shows the AccountReport Java interface.

package services.account;
import java.util.List;
public interface AccountReport {

List getAccountSummaries();

The next snippet shows the AccountSummary Java interface.

package services.account;

public interface AccountSummary{

SCA Sample Application 11 November 2005

SCA Service Component Architecture

String getAccountNumber();
void setAccountNumber(String accountNumber);

String getAccountType();
void setAccountType(String accountType);

float getBalance();
void setBalance(float balance);

In the next snippet you see the AccountServicelmpl Java implementation class which
implements the former AccountService interface. As you can see creating SCA implementations
in Java is about Java interfaces and simple Java classes (i.e. plain old Java objects, or POJO’s).
The AccountServicelmpl uses the SCA client programming model to interact with the
AccountDataService and StockQuoteService it references.

The AccountServicelmpl defines two member variables as references to other services using the
@Reference annotation. One reference is named accountDataService and has to be resolved
by a service implementing the AccountDataService interface that we created earlier. The other
reference is named stockQuoteService and has to be resolved by a service implementing the
StockQuoteService interface. These references get resolved by the SCA runtime through
injection. The SCA runtime knows what to inject from the module assembly file as we will see
when this implementation is used and configured by a component. You access the reference by
using the member variables.

The AccountServicelmpl defines one member variable as property for configuring the
implementation. The property is name currency is of type string and has a default set to “USD”.
Properties get set by the SCA runtime through injection. The SCA runtime knows what to inject
from the module assembly file as we will see when this implementation is used and configured by
a component. You access the property by using the member variable.

You can see how the implementation uses the AccountDataService to get the CheckingAccount,
SavingsAccount, and StockAccount information. From each the summary information is
transferred to AccountSummary objects, and balances get converted to the right currency. In
order to calculate the balance for the StockAccount a StockQuoteService is used. The currency
calculation is configured through the property.

AccountSummary objects are created as Service Data Objects (SDO) [1]. SDO'’s are created
using the SDO DataFactory API.

package services.account;
import java.util.List;
import commonj.sdo.DataFactory;

import org.osoa.sca.annotations.Property;
import org.osoa.sca.annotations.Reference;

import services.accountdata.AccountDataService;
import services.accountdata.CheckingAccount;

SCA Sample Application 12 November 2005

SCA Service Component Architecture

import services.accountdata.SavingsAccount;
import services.accountdata.StockAccount;
import services.stockquote.StockQuoteService;

public class AccountServicelmpl implements AccountService {

@Property

private String currency = "USD";

@Reference

private AccountDataService accountDataService;
@Reference

private StockQuoteService stockQuoteService;
public AccountReport getAccountReport(String customerliD) {

DataFactory dataFactory = DataFactory.INSTANCE;
AccountReport accountReport = (AccountReport)dataFactory.create(AccountReport.class);
List accountSummaries = accountReport.getAccountSummaries();

CheckingAccount checkingAccount = accountDataService.getCheckingAccount(customerliD);
AccountSummary checkingAccountSummary = (AccountSummary)dataFactory.create(AccountSummary.class);
checkingAccountSummary . setAccountNumber (checkingAccount.getAccountNumber());
checkingAccountSummary.setAccountType(*'checking™);

checkingAccountSummary .setBalance(fromUSDol larToCurrency(checkingAccount.getBalance()));
accountSummaries.add(checkingAccountSummary) ;

SavingsAccount savingsAccount = accountDataService.getSavingsAccount(customerlD);
AccountSummary savingsAccountSummary = (AccountSummary)dataFactory.create(AccountSummary.class);
savingsAccountSummary . setAccountNumber (savingsAccount.getAccountNumber());

savingsAccountSummary .setAccountType(*'savings');

savingsAccountSummary .setBalance(fromUSDol larToCurrency(savingsAccount.getBalance()));
accountSummaries.add(savingsAccountSummary) ;

StockAccount stockAccount = accountDataService.getStockAccount(customerliD);

AccountSummary stockAccountSummary = (AccountSummary)dataFactory.create(AccountSummary.class);
stockAccountSummary . setAccountNumber (stockAccount.getAccountNumber());

stockAccountSummary .setAccountType(*'stock™);

float balance= (stockQuoteService.getQuote(stockAccount.getSymbol()))*stockAccount.getQuantity();
stockAccountSummary.setBalance(fromUSDol larToCurrency(balance));
accountSummaries.add(stockAccountSummary);

return accountReport;

}

private float fromUSDollarToCurrency(float value){

if (currency.equals('USD'™)) return value; else
it (currency.equals(""EURO™)) return value * 0.8fF; else
return 0.0F;
3
¥

The following would be the resulting component type from reflecting the AccountServicelmpl.

<?xml version="1.0" encoding="ASCII"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/0.9"
xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema"">

<service name="AccountService'>

<interface.java interface="services.account.AccountService"/>
</service>
<reference name="accountDataService">

<interface.java interface="services.accountdata.AccountDataService"/>
</reference>
<reference name="stockQuoteService'>

SCA Sample Application 13 November 2005

SCA Service Component Architecture

<interface.java interface="services.stockquote.StockQuoteService"/>
</reference>

<property name="currency" type="xsd:string" default="USD"/>

</componentType>

The above example uses annotations on member fields to denote properties and references
(@Property and @Reference respectively). SCA provides several additional ways to configure a
component. The above implementation could have used Java bean style setter injection instead
of field injection, where property and reference names are derived from methods following the
setXXX pattern:

public class AccountServicelmpl implements AccountService {
/7.
private String currency = "USD";
@Property

public void setCurrency(String newCurrency){
currency = newCurrency;
}

private AccountDataService accountDataService;

@Reference

public void setAccountDataService(AccountDataService newAccountDataService){
accountDataService = newAccountDataService;

3

/7.

SCA also provides the ability to configure components without the need to annotate the
implementation class. In this case, the implementation will be introspected for corresponding
setter or fields:

public class AccountServicelmpl implements AccountService {
//..

private String currency = "USD";

public void setCurrency(String newCurrency){
currency = newCurrency;

}

private AccountDataService accountDataService;

public void setAccountDataService(AccountDataService newAccountDataService){
accountDataService = newAccountDataService;

b

/7.

1.3.1.5. Account Service Component
The component that you create in this step is the AccountServiceComponent that is
implemented by the AccountServicelmpl implementation that you created in the previous step.
SCA Sample Application 14 November 2005

SCA Service Component Architecture

SCA components are created in sca.module files. The SCA component is represented by a
component element in the sca.module file. The component element has a hame attribute
specifying the name of the component. An implementation element nested in the component
element specifies the implementation, e.g. the Java class implementing the component. The
component element also contains a references element which contains the wiring of the
references of the implementation. The component element also contains a properties elements
that contains the settings of the properties of the implementation.

In the next snippet the contents of the sca.module file of the bigbank.accountmodule is shown
containing the AccountServiceComponent. Nested in the component element is the
implementation element specifying the AccountServicelmpl Java class, the properties element
with the set properties, and the references element with the set references.

<?xml version="1.0" encoding=""ASCII1"?>
<module xmIns="http://www.osoa.org/xmlns/sca/0.9"
xmIns:v="http://www.osoa.org/xmlns/sca/values/0.9"

name=""bigbank.accountmodule" >

<component name="AccountServiceComponent'>
<implementation.java class="services.account.AccountServicelmpl"/>
<properties>
<v:currency>EURO</v:currency>
</properties>
<references>
<v:accountDataService>AccountDataServiceComponent</v:accountDataService>
<v:stockQuoteService>StockQuoteService</v:stockQuoteService>
</references>
</component>

<component name="AccountDataServiceComponent'>
<implementation.java class="services.accountdata.AccountDataServicelmpl*/>
</component>

<externalService name="StockQuoteService'>
<interface.java interface="services.stockquote.StockQuoteService"/>
<binding.ws port="http://www.quickstockquote.com/StockQuoteService#
wsdl .endpoint(StockQuoteService/StockQuoteServiceSOAP)" />
</externalService>

</module>

1.3.1.6. Account Service Web Service Entry Point
In this step you learn how to create an SCA entry point. An entry point publishes a service
provided by a module for remote access. You make a service implemented by module available
to clients outside of the module.

The entry point that we create in this step is the AccountService. It publishes the
AccountService provided by the AccountServiceComponent to Web service clients. The following
shows the bigbank.accountmodule contents after this step is completed.

SCA Sample Application 15 November 2005

SCA Service Component Architecture

=124 bigbank.accountmodule

- services.account

+-[J] AccountReport.java

[J] AccountService.java
4 AccountServiceImpl.java
[J] AccountSummary.java
AP AccountService.wsdl
+- 1 services.accountdata
+ -1 services.stockquote

|¥] sca.module

+

+

+

Before you can create the entry point in the sca.module file of the bigbank.accountmodule you
have to create the WSDL definition file that the SCA runtime uses to bind the entry point, and
that is used by clients to call the service provided by the entry point. It is expected that an SCA
runtime would provide tools to generate a WSDL file, but here we create it by hand for
illustrative purposes.

The following snippet shows the content of the AccountService.wsdl file.

<wsdl :definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.bigbank.com/AccountService/"
xmlIns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlIns:xsd=""http://www.w3.0rg/2001/XMLSchema"*
targetNamespace="http://www.bigbank.com/AccountService/"

name=""AccountService" >

<wsdl :types>
<xsd:schema
targetNamespace="http://www.bigbank.com/AccountService/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"">

<xsd:element name="customerID" type="xsd:string" />
<xsd:element name="'getAcountReportResponse" type="tns:AccountReport"” />

<xsd:complexType name="‘AccountReport'>
<xsd:sequence>
<xsd:element name="accountSummarie' type='"tns:AccountSummary"
maxOccurs=""unbounded" />
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="AccountSummary"'>
<xsd:sequence>
<xsd:element name="accountNumber' type="xsd:string"/>
<xsd:element name="accountType" type="'xsd:string"/>
<xsd:element name="balance" type='xsd:float"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>
</wsdl :types>
<wsdl :message name="‘getAcountReportRequest'>
<wsdl:part element=""tns:customerlID" name='‘getAcountReportRequest" />
</wsdl :message>
<wsdl:message name="'getAcountReportResponse'>
<wsdl:part element=""tns:getAcountReportResponse' name="'getAcountReportResponse" />
</wsdl :message>
<wsdl :portType name="AccountService'>

SCA Sample Application 16 November 2005

SCA Service Component Architecture

<wsdl :operation name='‘getAcountReport'>
<wsdl:input message=""tns:getAcountReportRequest" />
<wsdl :output message='"tns:getAcountReportResponse" />
</wsdl :operation>
</wsdl :portType>
<wsdl:binding name="AccountServiceSOAP" type="tns:AccountService'>
<soap:binding style="document™
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl :operation name=''getAcountReport'>
<soap:operation
soapAction="http://www.bigbank.com/AccountService/getAcountReport"” />
<wsdl : input>
<soap:body use="literal" />
</wsdl:input>
<wsdl :output>
<soap:body use="literal" />
</wsdl :output>
</wsdl :operation>
</wsdl:binding>
<wsdl:service name="AccountService'>
<wsdl:port binding="tns:AccountServiceSOAP" name=""AccountServiceSOAP">
<soap:address location="" />
</wsdl:port>
</wsdl:service>
</wsdl :definitions>

Next you create the entry point named AccountService in the sca.module file of the
bigbank.accountmodule. The entry point is represented by an entryPoint element in the SCA
module file. The entryPoint element has a name attribute specifying the name of the entry
point, and three child elements. The binding element specifies the access mechanism that can
be used to call the published service (e.g. Web service binding). The interface element
specifies the published service interface. The reference element wires the entry point to a service
provided by a component or an external service.

In the next snippet the contents of the sca.module file of the bigbank.accountmodule is shown
containing the AccountService entry point. The binding element is specified naming the
MyValueServiceSOAP port from the MyValueService.wsdl file that we created earlier. The
reference of the AccountService entry point is linked to the AccountServiceComponent.

<?xml version="1.0" encoding="ASCII1"?>
module xmIns="http://www.osoa.org/xmlns/sca/0.9"
xmIns:v="http://www.osoa.org/xmlns/sca/values/0.9"

name=""bigbank.accountmodule’ >

<entryPoint name="AccountService'>
<interface.java interface="services.account_AccountService"/>
<binding.ws port="http://www.bigbank.com/AccountService#
wsdl .endpoint(AccountService/AccountServiceSOAP) " />
<reference>AccountServiceComponent</reference>
</entryPoint>

<component name="AccountServiceComponent'>

<implementation.java class="services.account.AccountServicelmpl"/>

<properties>
<v:currency>EURO</v:currency>

</properties>

<references>
<v:accountDataService>AccountDataServiceComponent</v:accountDataService>
<v:stockQuoteService>StockQuoteService</v:stockQuoteService>

SCA Sample Application 17 November 2005

SCA Service Component Architecture

</references>
</component>

<component name="AccountDataServiceComponent'>
<implementation.java class="services.accountdata.AccountDataServicelmpl"/>
</component>

<externalService name='"StockQuoteService'>
<interface.java interface="services.stockquote.StockQuoteService"/>
<binding.ws port="http://www.quickstockquote.com/StockQuoteService#
wsdl .endpoint(StockQuoteService/StockQuoteServiceSOAP) " />
</externalService>

</module>

SCA Sample Application 18 November 2005

SCA Service Component Architecture

1.3.2. Creating the bigbank.webclientmodule

In this section, we demonstrate how to access the account service from a web application which
provides functionality for tracking user state. Specifically, this section illustrates accessing and
external service from a web application, the use of local service components, SCA scope
management, and JSP and Servlet integration.

The BigBank web application allows users to login, tracks their profile via a local service scoped
to the HTTP session, and displays their account summary information. This is done through the
use of Servlets, JSP and Taglibs. It is expected that in a more extensive example a full-featured
web Ul framework would be used.

The design of the web Ul calls for a user to navigate to the login page, provide a user name and
password, and then be forwarded to an account summary page which displays their account
information accessed through the account service developed in the previous section.

In the next several sections we cover creating the SCA services for the web application:

e The login service for logging users into the web application
e The user profile service for tracking user state

e The account external service for accessing the account service

Once the SCA components have been created and configured, the ensuing sections will
demonstrate how they may be accessed by the Ul tier using servlets, JSPs and Taglibs.

1.3.2.1. Login Service Implementation

The implementation that you create in this step is the LoginServicelmpl. It offers a service
providing a LoginService interface to clients in the bigbank.webclientmodule. The
LoginServicelmpl implementation is responsible for logging a user into the application.

In this step you create a subfolder named services/profile for all the files that make the
LoginServicelmpl implementation.

The next snippet shows the LoginService Java interface.

package services.profile;

public interface LoginService{
public static final int SUCCESS = 1;
public static final int INVALID LOGIN = -1;
public static final int INVALID_PASSWORD = -2;

public int login(String userName, String password);

}
SCA Sample Application 19 November 2005

SCA Service Component Architecture

In the next snippet you see the SimpleLoginServicelmpl Java implementation class which
implements the former SimpleLoginService interface. It also uses the @Reference annotation to
declare its dependency on a service implementing the ProfileService interface.

package services.profile;

import org.osoa.sca.annotations.Service;
import org.osoa.sca.annotations.Reference;

@Service(LoginService.class)
public class SimpleLoginServicelmpl implements LoginService{

@Reference
private ProfileService profileService;

public int login(String userName, String password) {
if (I"test"._equals(userName)){
return INVALID_LOGIN;
3

if (I"password".equals(password)){
return INVALID_PASSWORD;
}

profileService.setlLoggedIn(true);
profileService.setFirstName(*'John™);
profileService.setLastName(''Doe");
profileService.setld(''12345");

return SUCCESS;

The following would be the resulting component type from reflecting the SimpleLoginServicelmpl.

<?xml version="1.0" encoding=""ASCII1"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/0.9">

<service name="LoginService">

<interface.java interface="services.profile.LoginService"/>
</service>

<reference name="profileService">
<interface.java interface="services.profile.ProfileServicelmpl"/>
</reference>

</componentType>

1.3.2.2. Login Component

The component that you create in this step is the LoginServiceComponent that is implemented
by the LoginServicelmpl implementation that you created in the previous step.

SCA Sample Application 20 November 2005

SCA Service Component Architecture

In the next snippet the contents of the sca.module file of the bigbank.webclientmodule is shown
containing the LoginServiceComponent. Nested in the component element is the implementation
element specifying the LoginServicelmpl Java class. The configuration of the components
profileService reference will be done once we have the ProfileServiceComponent defined in a
following step.

<?xml version="1.0" encoding=""ASCII1"?>
<module xmIns="http://www.osoa.org/xmlns/sca/0.9"
xmIns:v="http://www.osoa.org/xmlns/sca/values/0.9"

name="bigbank.webclientmodule" >

<component name="LoginServiceComponent'>
<implementation.java class="services.profile._SimpleLoginServicelmpl'/>
<references></references>

</component>

</module>

1.3.2.3. Profile Service Implementation

The implementation that you create in this step is the ProfileServicelmpl. It offers a service
providing a ProfileService interface to clients in the bigbank.webclientmodule. The
ProfileService tracks basic user state as the user navigates through the web application.

In this step you use the subfolder named services/profile created in the previous step to add all
the files that make the ProfileServicelmpl implementation.

The next snippet shows the ProfileService Java interface.

package services.profile;
import org.osoa.sca.annotations.Scope;

@Scope(‘'session'™)
public interface ProfileService{

public String getFirstName();
public void setFirstName(String pName);

public String getLastName();
public void setLastName(String pName);

public boolean isLoggedIn();
public void setLoggedIn(boolean pStatus);

public String getld();
public void setld(String pld);

In the next snippet you see the ProfileServicelmpl Java implementation class which
implements the former ProfileService interface . The ProfileService interface uses the @Scope
annotation to declare that ProfileServicelmpl instances are scoped by session (i.e. in the
context of a web application the http session). The SCA runtime is responsible for returning the

SCA Sample Application 21 November 2005

SCA Service Component Architecture

correct instance to client code transparently, alleviating the need for the application to perform
manual instance management.

package services.profile;

import org.osoa.sca.annotations.Property;
import org.osoa.sca.annotations.Scope;
import org.osoa.sca.annotations.Service;

@Service(ProfileService.class')
@Scope(‘'session'™)
public class ProfileServicelmpl implements ProfileService{

@Property
private String firstName;

public String getFirstName({
return firstName;

public void setFirstName(String FirstName){
this.firstName = firstName;
b

private String lastName;
public String getLastName(){
return lastName;

public void setLastName(String lastName){

this.lastName = lastName;
3

private boolean loggedin;

public boolean isLoggedIn(){
return loggedin;

}

public void setLoggedIn(boolean status){
loggedIn = status;
}

private String id;
public String getld(Q{
return id;

}

public void setld(String id){
this.id = id;

}

The following would be the resulting component type from reflecting the ProfileServicelmpl.

<?xml version="1.0" encoding=""ASCII1"?>
<componentType xmlns="http://www.osoa.org/xmlns/sca/0.9"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"*>
<service name="ProfileService">
<interface.java interface="services.profile._ProfileServicelmpl"/>
</service>
<property name="TfirstName" type="xsd:string" defaul lt="Anonymous"/>

</componentType>

SCA Sample Application 22 November 2005

SCA Service Component Architecture

1.3.2.4. Profile Component

The component that you create in this step is the ProfileServiceComponent that is
implemented by the ProfileServicelmpl implementation that you created in the previous step.

In the next snippet the contents of the sca.module file of the bigbank.webclientmodule is shown
containing the ProfileServiceComponent. Nested in the component element is the implementation
element specifying the ProfileServicelmpl Java class. The component also configures the
firstName property defined by the ProfileService Impl implementation to the value Anonymous.
At this point also the reference of the LoginServiceComponent gets reolved by wiring it to the
ProfileServiceComponent.

<?xml version="1.0" encoding="ASCII1"?>
<module xmIns="http://www.osoa.org/xmlns/sca/0.9"
xmlns:v="http://www.osoa.org/xmlns/sca/values/0.9"

name="bigbank.webclientmodule" >

<component name="LoginServiceComponent'>
<implementation.java class="services.profile.SimpleLoginServicelmpl'/>
<references>
<v:profileService>ProfileServiceComponent</v:profileService>
</references>
</component>

<component name="ProfileServiceComponent'>
<implementation.java class="services.profile_Profilelmpl"/>
<properties>
<v:firstName>Anonymous</v:firstName>
</properties>
</component>

</module>

1.3.2.5. Account Service Web Service External Service

The external service that you create in this step is the AccountService. It offers a service
providing a AccountService interface to clients in the bigbank.webclientmodule.

You first create a subfolder named services/account for all the files needed by the
AccountService external service.

The next snippet shows the AccountService.wsdl of the service that will be offered by the
external service. In our scenario it's the AccountService provided by the bigbank.accountmodule.

<wsdl:definitions xmIns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlIns:tns="http://www.bigbank.com/AccountService/""
xmlIns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace=""http://www.bigbank.com/AccountService/"

name="'AccountService" >

<wsdl :types>
<xsd:schema
targetNamespace="http://www.bigbank.com/AccountService/"

SCA Sample Application 23 November 2005

SCA Service Component Architecture

xmlns:xsd=""http://www.w3.0rg/2001/XMLSchema"">

<xsd:element name="customerID" type="xsd:string" />
<xsd:element name="'getAcountReportResponse' type="tns:AccountReport"” />

<xsd:complexType name="‘AccountReport’'>
<xsd:sequence>
<xsd:element name="accountSummarie' type='"tns:AccountSummary"
maxOccurs=""unbounded" />
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="AccountSummary"*>
<xsd:sequence>
<xsd:element name="accountNumber' type="xsd:string"/>
<xsd:element name="accountType" type="'xsd:string"'/>
<xsd:element name="balance" type='xsd:float"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>
</wsdl :types>
<wsdl :message name="getAcountReportRequest'>
<wsdl:part element=""tns:customerlID" name='‘getAcountReportRequest" />
</wsdl :message>
<wsdl:message name="getAcountReportResponse'>
<wsdl :part element=""tns:getAcountReportResponse' name="'getAcountReportResponse" />
</wsdl :message>
<wsdl :portType name="AccountService'>
<wsdl :operation name=''getAcountReport'>
<wsdl:input message=""tns:getAcountReportRequest" />
<wsdl :output message='"tns:getAcountReportResponse"” />
</wsdl :operation>
</wsdl :portType>
<wsdl:binding name="AccountServiceSOAP" type=""tns:AccountService'>
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl :operation name='getAcountReport'>
<soap:operation
soapAction="http://www.bigbank.com/AccountService/getAcountReport"” />
<wsdl: input>
<soap:body use="literal" />
</wsdl : input>
<wsdl :output>
<soap:body use="literal” />
</wsdl :output>
</wsdl :operation>
</wsdl:binding>
<wsdl :service name="AccountService'>
<wsdl :port binding="tns:AccountServiceSOAP" name=""AccountServiceSOAP">
<soap:address location=""" />
</wsdl:port>
</wsdl:service>
</wsdl :definitions>

Since you want to deal with static Java types when using the AccountService you have to
create the corresponding Java interfaces for the wsdl portType, note that a SCA run-time should
provide command line type tools to generate the static Java types. Since we created it before in
the other module we just copy it here.

The AccountService WSDL portType uses the document literal style of data encoding. The next
snippet shows the AccountService Java interface derived from it.

package services.account;

SCA Sample Application 24 November 2005

SCA Service Component Architecture

@Remotable
public interface AccountService{

public AccountReport getAccountReport(String customerlD);

The next snippet shows the AccountReport Java interface.

package services.account;
import java.util._.List;
public interface AccountReport {

@SDOProperty(type=AccountSummary.class)
List getAccountSummaries();

}

The next snippet shows the AccountSummary Java interface.

package services.account;
public interface AccountSummary{

String getAccountNumber();
void setAccountNumber(String accountNumber);

String getAccountType();
void setAccountType(String accountType);

float getBalance();
void setBalance(float balance);

Next you create the external service named AccountService in the sca.module file of the
bigbank.webclientmodule.

In the next snippet the contents of the sca.module file is shown containing the AccountService
external service. A Web service binding element is specified naming the AccountServiceSOAP
port from the AccountService.wsdl file.

<?xml version="1.0" encoding="ASCII"?>
<module xmlns="http://www.osoa.org/xmlns/scas/0.9"
xmiIns:v="http://www.osoa.org/xmlns/sca/values/0.9"

name=""bigbank.webclientmodule" >

<component name="LoginServiceComponent'>
<implementation. java class="services.profile.SimpleLoginServicelmpl'/>
<references>
<v:profileService>ProfileServiceComponent</v:profileService>
</references>
</component>

<component name="ProfileServiceComponent'>

SCA Sample Application 25 November 2005

SCA Service Component Architecture

<implementation.java class="services.profile_Profilelmpl"/>
<properties>
<v:firstName>Anonymous</v:firstName>
</properties>
</component>

<externalService name="AccountService'>
<interface.java interface="services.account.AccountService"/>
<binding.ws port="http://www.bigbank.com/AccountService#
wsdl .endpoint(AccountService/AccountServiceSOAP) " />
</externalService>

</module>

We have now finished creating and configuring the web application SCA components. The
following sections will cover how they may be accessed using standard Ul technologies.

1.3.2.6. Login HTML Page

The login.html page is responsible for posting the username and password of the current user to
the login servlet, which will interact with SCA local service components to perform the login
operation. The page contains a simple html form:

<html>
<title>Welcome to Big Bank</title>
<body>
<form action="loginAction" method="post'>
<table>
<tr>
<td colspan="2">Please login in to access your account</td>
</tr>
</table>
<table>
<tr>
<td>Login</td>
<td><input type=""text" name="login" /></td>
</tr>
<tr>
<td>Password</td>
<td><input type="password" name="password" /></td>
</tr>
<tr>
<td></td>
<td align="right"><input type="'submit" /></td>
</tr>
</table>
</form>
</body>
</html>

1.3.2.7. Login Servlet

The login servlet is responsible for processing the user name and password posted from
login.html and invoking the login local service. This demonstrates how to access local service
components from a servlet using the ModuleContext API. In this case, the login service is
configured as “LoginServiceComponent” in the web application’s sca.module file.
CurrentModuleContext.getContext() returns the current module context, which in turn is used to
lookup the local service component through the call to locateService(“LoginServiceComponent”):

SCA Sample Application 26 November 2005

SCA Service Component Architecture

The following snippet shows the LoginServlet.java implementation.

package bigbank.web.ui;

import java.io.lOException;

import javax.servlet.ServletConfig;

import javax.servlet.ServletContext;

import javax.servlet.ServletException;

import javax.servlet_http._HttpServlet;

import javax.servlet_http._HttpServletRequest;
import javax.servlet._http._HttpServletResponse;

import org.osoa.sca.CurrentModuleContext;
import org.osoa.sca.-ModuleContext;

import services.profile.LoginService;
public class LoginServlet extends HttpServiet{
private ServletContext mContext;

public void init(ServletConfig pCfg) throws ServletException{
mContext = pCfg.getServietContext();
}

public void doPost(HttpServletRequest pReq, HttpServletResponse pResp) throws ServletException{

LoginService loginMgr = (LoginService)CurrentModuleContext.getContext() .

locateService(*'LoginServiceComponent');

if (loginMgr == null){
throw new ServletException(‘'LoginManager not found');
}

String login = pReq.getParameter('login™);
String password = pReq.getParameter(“'password');
try{
if (login == null || password == null){
pResp.sendRedirect(*'summary.jsp');
b

int resp = loginMgr.login(login, password);
if (resp == LoginService.SUCCESS){

pResp.sendRedirect(*'summary.jsp');
Yelse{

mContext.getRequestDispatcher('/login.jsp') .forward(pReq, pResp);

}
}catch (10Exception e){

throw new ServletException(e);
3

1.3.2.8. Summary JSP

The following shippet shows the Summary.jsp implementation. This page is responsible for
displaying account information returned by the account service. Following best practices, BigBank
has isolated the Java code for doing so in a series of JSP tags, leaving the summary page free

from implementation detail:

<%@ page import="org.osoa.sca.ModuleContext, services.profile.ProfileService,
services.account.AccountService" %>

<%@ taglib uri="/WEB-INF/bigbank-tags.tld" prefix="sca"%>

SCA Sample Application 27 November 2005

SCA Service Component Architecture

<sca:login profile="ProfileServiceComponent™ url="login.jsp">
<sca:service id="profile" name="ProfileServiceComponent'/>

<html>
<title>BigBank Account Summary</title>
<body>

Account Information for <jsp:getProperty name="profile® property="firstName"/> <jsp:getProperty
name="profile® property="lastName"/>

<table>

<sca:accountStatus accountService="AccountServiceComponent" profileService="ProfileServiceComponent"
id=""account'>

<tr>
<td>Account</td>
<td>Balance</td>
</tr>
<tr>
<td><jsp:getProperty name="account" property="accountNumber" /></td>
<td><jsp:getProperty name="account" property="balance" /></td>
</tr>
</sca:accountStatus>
<table>
</body>
</html>

</sca:login>

Summary.jsp uses several tags:

¢ A login tag that acts as a security barrier, redirecting the user to login.jsp if they are not
logged in

e A service tag, for placing the session-scoped user profile service into the page context,
so that the current user name may be displayed using the standard JSP property tag

e The account status tag, which accesses the account external service to display the
account status information for the current user

1.3.2.9. JSP tags

The BigBank sample source contains several JSP tags which interact with SCA services. We will
focus here on the ServiceTag.java implementation, since the other tags contain similar
functionality.

The following snippet shows the ServiceTag.java implementation. Recalling the summary.jsp,
the service tag is used to access the profile service to display the user’'s name. The key concept
of this tag is the use of the ModuleContext API to retrieve the current profile. Since the service is
session scoped, the SCA container will transparently return the correct instance based on the
current HTTP session, which will then be placed in the page scope by the tag. The profile service
may then be referenced using the standard JSP property tag:

package bigbank.tags.sca;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.TagSupport;

import org.osoa.sca.CurrentModuleContext;
import org.osoa.sca.-ModuleContext;

/**
SCA Sample Application 28 November 2005

SCA Service Component Architecture

* Places an SCA service in the JSP page context, making it available to other
* tags corresponding to its id value.
*/

public class ServiceTag extends TagSupport{

/)
// Constructors
/) e
public ServiceTag(){

super();
/)
// Methods
/) e

private String mName;

/**
* Returns the name of the SCA service to import into the page context.
*/
public String getName(){
return mName;
3

/**
* Sets name of the SCA service to import into the page context.
*/
public void setName(String pName){
mName = pName;

}
private String mld;
/**
* Returns the id of the service in the page context
*
/

public String getld({
return mld;
3

/**
* Sets the id of the service for the page context
*/

public void setld(String pld){
mld = pld;
}

public int doStartTag() throws JspException{
Object service = CurrentModuleContext.getContext().locateService(mName);
ifT (service == null){
throw new JspException(*'Service [+ mName + ']
not found in current module context™);

}

ifT (mld == null){
// if the 1d name was not specified, default to the basic name of the
// service
mld = mName;

}

pageContext._setAttribute(mld, service);

return EVAL_BODY_INCLUDE;

}

public int doEndTag() throws JspException{
return EVAL_PAGE;
}

SCA Sample Application 29 November 2005

SCA Service Component Architecture

public void release(){
super.release();
}

}

SCA Sample Application 30 November 2005

SCA Service Component Architecture

1.4. Deployment

Note: The subsystem artifact deployment may vary across different SCA runtime environments.

1.4.1. Creating the bigbank.accountsubsystem

In this step you learn how to create an SCA subsystem. You use subsystems to configure and
administer modules in an SCA system (i.e. the SCA run-time). A subsystem is represented by a
folder in the file system with an sca.subsystem file at the folder root.

The subsystem that you create in this step is the bigbank.accountsubsystem. We create a
folder named bigbank.accountsubsystem in the file system with an sca.subsystem file at the
folder root. The following shows the bigbank.accountsubsystem contents after this step is
complete.

--=% bighank.accountsubsystem
H| sca.subsystem

Within the sca.subsystem file you create module components. Module components are
implemented by modules. The module component is represented by a moduleComponent
element in the sca.subsystem file. The modulComponent element has a name attribute
specifying the name of the module component, and a module attribute specifying the module
that implements the subsystem. Entry points defined in a module define the services of the
module component implemented by the module. External services defined in a module define
the references of the module component implemented by the module. The module component
element also contains a references element which contains the wiring of the references of the
module. There can be multiple module components that are implemented by the same module.

In the next snippet the contents of the sca.subsystem file of the bigbank.accountsubsystem is
shown containing the AccountModuleComponet implemented by the bigbank.accountmodule.

<?xml version="1.0" encoding=""ASCII1"?>
<subsystem xmIns="http://www.osoa.org/xmlns/sca/0.9"

name="bigbank.accountsubsytem'>
<moduleComponent name="AcountModuleComponent' module="bigbank.accountmodule"/>

</subsystem>

1.4.2. Creating the bigbank.webclientsubsystem

The subsystem that you create in this step is the bigbank.webclientsubsystem. We create a
folder named bigbank.webclientsubsystem in the file system with an sca.subsystem file at the
folder root. The following shows the bigbank.webclientsubsystem contents after this step is
complete.

SCA Sample Application 31 November 2005

SCA Service Component Architecture

= 1=% highank.webclientsubsystem
[¥| sca.subsystem

In the next snippet the contents of the sca.subsystem file of the bigbank.webclientsubsystem is
shown containing the WebClientModuleComponet implemented by the
bigbank.webclientmodule. In the references element if the module component the
AccountService reference is wired to the AccoutService provided by the
AccountModuleComponent in the bigbank.accountsubsystem.

<?xml version="1.0" encoding=""ASCII1"?>
<subsystem xmlns="http://www.osoa.org/xmlns/sca/0.9"
xmIns:v="http://www.osoa.org/xmlns/sca/values/0.9"

name=""bigbank.webclientsubsytem">

<moduleComponent name="WebClientModuleComponent" module="bigbank.webclientmodule'>

<references>
<v:AccountService>bigbank.accountsunbsystem/AccountModuleComponent/AccountService</v:AccountService>

</references>
</moduleComponent>

</subsystem>

SCA Sample Application 32 November 2005

SCA Service Component Architecture

1.4.3. Deployment of Modules and Subsystems

SCA modules and SCA subsystems get deployed in SCA systems (i.e. the SCA run-time). An
system may have two architected folders one named modules that contains the deployed SCA
modules, and the other named subsystems that contains the deployed SCA subsystems.

The modules folder contains one subfolder per module that either can contain the module
contents in expanded or archive form. The name of the module subfolder is the name of the
module. Similar the subsystems folder contains one subfolder per subsystem that either can
contains the subsystem contents in expanded or archive form. The name of the subsystem
subfolder is the name of the subsystem.

The following shows the deployment of the bigbank.accountmodule, the
bigbank.accountsubsystem, the bigbank.webclientmodule, and the bigbank.webclientsubsystem
and the MyValueSubsystem. Modules and subsystems are deployed in archive form in this
sample.

SCA system

bigbank.webclientsubsystem bigbank.accountsubsystem

<sca-system-folder>
modules
bigbank.accountmodule
AccountModule.jar
bigbank.webclientmodule
WebClientModule.jar

deploy

WebClientModule AccountModule ,@
&

Component Component

subsystems
bigbank.accountsubsystem
AccountSubsystem.jar
bigbank.webclientsubsystem
WebClientSubsystem.jar

implements implements

deploy

Figure 3: BigBank Application Deployment

SCA Sample Application 33 November 2005

SCA Service Component Architecture

2. References

[1] SDO Specification

Any one of:

http://dev2dev.bea.com/technologies/commonj/index.jsp

http://www.ibm.com/developerworks/library/specification/ws-sdo/

http://oracle.com/technology/webservices/sca

https://www.sdn.sap.com/

http://www.xcalia/xdn/specs/sdo

http:/www.sybase.com/sca

[2] JAXB Specification

http://www.jcp.org/en/jsr/detail?id=31

[3] SCA Assembly Model Specification

Any one of:

http://dev2dev.bea.com/technologies/commonj/index.jsp

http://www.ibm.com/developerworks/library/specification/ws-sca/

http://www.iona.com/devcenter/sca/

http://oracle.com/technology/webservices/sca

https://www.sdn.sap.com/

http://www.sybase.com/sca

[4] SCA Client and Implementation Specification

Any one of:

http://dev2dev.bea.com/technologies/commonj/index.jsp

http://www.ibm.com/developerworks/library/specification/ws-sca/

http://www.iona.com/devcenter/sca/

http://oracle.com/technology/webservices/sca

https://www.sdn.sap.com/

http://www.sybase.com/sca

SCA Sample Application 34 November 2005

http://dev2dev.bea.com/technologies/commonj/index.jsp
http://www.ibm.com/developerworks/library/specification/ws-sdo/
http://oracle.com/technology/webservices/sca
https://www.sdn.sap.com/
http://www.xcalia/xdn/specs/sdo
http://www.sybase.com/sca
http://www.jcp.org/en/jsr/detail?id=31
http://dev2dev.bea.com/technologies/commonj/index.jsp
http://www.ibm.com/developerworks/library/specification/ws-sca/
http://www.iona.com/devcenter/sca/
http://oracle.com/technology/webservices/sca
https://www.sdn.sap.com/
http://www.sybase.com/sca
http://dev2dev.bea.com/technologies/commonj/index.jsp
http://www.ibm.com/developerworks/library/specification/ws-sca/
http://www.iona.com/devcenter/sca/
http://oracle.com/technology/webservices/sca
https://www.sdn.sap.com/
http://www.sybase.com/sca

SCA Service Component Architecture

[5] SCA Whitepaper
Any one of:

e http://dev2dev.bea.com/technologies/commonj/index.jsp

e http://www.ibm.com/developerworks/library/specification/ws-sca/

e http://www.iona.com/devcenter/sca/

e http://oracle.com/technology/webservices/sca

e https://www.sdn.sap.com/

e http://www.sybase.com/sca

SCA Sample Application 35 November 2005

http://dev2dev.bea.com/technologies/commonj/index.jsp
http://www.ibm.com/developerworks/library/specification/ws-sca/
http://www.iona.com/devcenter/sca/
http://oracle.com/technology/webservices/sca
https://www.sdn.sap.com/
http://www.sybase.com/sca

	Creating the bigbank.accountmodule
	Account Data Service Implementation
	Account Data Service Component
	StockQuote Web Service External Service
	Account Service Implementation
	Account Service Component
	Account Service Web Service Entry Point

	Creating the bigbank.webclientmodule
	Login Service Implementation
	Login Component
	Profile Service Implementation
	Profile Component
	Account Service Web Service External Service
	Login HTML Page
	Login Servlet
	Summary JSP
	JSP tags

	Creating the bigbank.accountsubsystem
	Creating the bigbank.webclientsubsystem
	Deployment of Modules and Subsystems

