atsec is a trademark of atsec GmbH

IBM, IBM logo, BladeCenter, eServer, iSeries, OS/400, PowerPC, POWER3, POWER4, POWER4+, pSeries, S390, xSeries, zSeries, zArchitecture, and z/VM are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States, other countries, or both.

Java and all Java-based products are trademarks of Sun Microsystems, Inc., in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group in the United States and other countries.

This document is provided AS IS with no express or implied warranties. Use the information in this document at your own risk.

This document may be reproduced or distributed in any form without prior permission provided the copyright notice is retained on all copies. Modified versions of this document may be freely distributed provided that they are clearly identified as such, and this copyright is included intact.

Copyright (c) 2003, 2004 by atsec GmbH, and IBM Corporation or its wholly owned subsidiaries.
Contents

1 Introduction 6
 1.1 Purpose of this document . 6
 1.2 How to use this document . 6
 1.3 What is a CC compliant system? . 6
 1.3.1 Hardware requirements . 7
 1.3.2 Software requirements . 7
 1.3.3 Environmental requirements . 7
 1.3.4 Operational requirements . 7
 1.4 Requirements for the system’s environment . 8
 1.5 Requirements for the system’s users . 8
 1.6 Overview of the system’s security functions . 9
 1.6.1 Identification and authentication . 9
 1.6.2 Audit . 9
 1.6.3 Discretionary access control . 9
 1.6.4 Object reuse . 9
 1.6.5 Security management and system protection . 10
 1.6.6 Secure communication . 10
 1.7 Overview of security relevant events . 10

2 Installation 10
 2.1 Supported hardware . 10
 2.2 Selection of install options and packages . 11

3 Secure initial system configuration 15
 3.1 Prerequisites . 16
 3.1.1 Filesystem configuration . 16
 3.1.2 Getting required updates . 16
 3.2 Automated configuration of the system . 18
 3.3 Add and remove packages . 20
 3.4 Disable services . 23
 3.4.1 Disable usbfs . 24
 3.5 Remove SUID/SGID root settings from binaries . 25
 3.6 Update permissions for ‘su’ . 25
 3.7 Disable root login over the network . 26
 3.8 Setting up SSH . 26
 3.9 Setting up xinetd . 27
 3.10 Setting up FTP . 27
 3.11 Setting up Postfix . 28
 3.12 Setting up the audit subsystem . 29
 3.12.1 Setting up the audit configuration files . 29
 3.12.2 Starting auditd at boot as a system service . 29
 3.12.3 Starting auditd in fail-secure mode from init (OPTIONAL) 29
 3.12.4 Ensuring that the PAM library is audit enabled . 30
 3.13 Introduction to Pluggable Authentication Module (PAM) configuration 30
 3.14 Required Pluggable Authentication Module (PAM) configuration . 32
 3.14.1 /etc/pam.d/chage . 32
 3.14.2 /etc/pam.d/chfn . 32
 3.14.3 /etc/pam.d/chsh . 33
 3.14.4 /etc/pam.d/login . 33
 3.14.5 /etc/pam.d/other . 34
 3.14.6 /etc/pam.d/passwd . 34
 3.14.7 /etc/pam.d/sshd . 34
4 System operation

4.1 System startup, shutdown and crash recovery
4.2 Backup and restore
4.3 Gaining superuser access
4.4 Installation of additional software
4.5 Scheduling processes using cron and at
4.6 Mounting filesystems
4.7 Managing user accounts
4.8 Using serial terminals
4.9 SYSV shared memory and IPC objects
4.10 Configuring secure network connections with stunnel
 4.10.1 Introduction
 4.10.2 Creating an externally signed certificate
 4.10.3 Creating a self-signed certificate
 4.10.4 Activating the tunnel
 4.10.5 Using the tunnel
 4.10.6 Example 1: Secure SMTP delivery
 4.10.7 Example 2: Simple web server
 4.10.8 Example 3: system status view
4.11 The Abstract Machine Testing Utility (AMTU)
4.12 Setting the system time and date

5 Monitoring, Logging & Audit

5.1 Reviewing the system configuration
5.2 System logging and accounting
5.3 Configuring the audit subsystem
 5.3.1 Intended usage of the audit subsystem
 5.3.2 Selecting the events to be audited
 5.3.3 Reading and searching the audit records
 5.3.4 Starting and stopping the audit subsystem
 5.3.5 Storage of audit records
 5.3.6 Reliability of audit data
5.4 System configuration variables in /etc/sysconfig
 5.4.1 suseconfig
 5.4.2 security
 5.4.3 cron
 5.4.4 language
 5.4.5 backup
 5.4.6 boot
 5.4.7 displaymanager
5.4.8 kernel .. 61
5.4.9 clock .. 61
5.4.10 proxy .. 62
5.4.11 windowmanager .. 62
5.4.12 sysctl .. 62
5.4.13 java .. 62
5.4.14 mail .. 62
5.4.15 hardware .. 62
5.4.16 printer .. 62
5.4.17 news .. 62
5.4.18 console .. 62
5.4.19 keyboard ... 63
5.4.20 mouse ... 63
5.4.21 lvm .. 63
5.4.22 network ... 63
5.4.23 syslog ... 63
5.4.24 SuSEfirewall2 63
5.4.25 hotplug .. 63
5.4.26 ssh .. 63
5.4.27 postfix ... 63
5.4.28 bootloader .. 63
5.4.29 audit ... 63

6 Security guidelines for users 64
6.1 Online Documentation 64
6.2 Authentication .. 64
6.3 Password policy ... 65
6.4 Access control for files and directories 66
6.5 Data import / export 67

7 Appendix .. 67
7.1 Online Documentation 67
7.2 Literature ... 68
7.3 The file /etc/audit/audit.conf 68
7.4 The file /etc/audit/filter.conf 69
7.5 The file /etc/audit/filesets.conf 78
1 Introduction

1.1 Purpose of this document

The SUSE LINUX Enterprise Server (SLES) distribution is designed to provide a secure and reliable operating system for a variety of purposes. Because security requirements obviously depend on the applications and environment, it is not possible to simply certify that the system is "secure", a more precise definition is needed.

The Common Criteria (CC) provides a widely recognized methodology for security certifications. A CC evaluation is fundamentally a two-step process, consisting of defining the "security target" which describes the features that are to be evaluated, and then testing and verifying that the system actually implements these features with a sufficient level of assurance.

This document is a security guide that explains how to set up the evaluated configuration, and provides information to administrators and ordinary users to ensure secure operation of the system. It is intended to be self-contained in addressing the most important issues at a high level, and refers to other existing documentation where more details are needed.

The document primarily addresses administrators, but the section "Security guidelines for users" is intended for ordinary users of the system as well as administrators.

Knowledge of the Common Criteria is not required for readers of this document.

1.2 How to use this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

Note that the terms "SHOULD" and "SHOULD NOT" are avoided in this document. Requirements are either absolute (and marked with MUST and equivalent terms), or entirely optional (in the sense of not affecting required security functions) and marked with RECOMMENDED, MAY or OPTIONAL.

If you follow the requirements in this document when setting up and using the system, your configuration will match the evaluated configuration. Certain configuration options are marked as OPTIONAL and you MAY modify them as needed, but you MUST NOT make other changes, because they will make the system fail to match the evaluated configuration.

Of course, you MUST always use common sense. This document is not a formal specification, and legitimate reasons may exist to modify the system setup in ways not described here if that is necessary for the system to fulfill its intended purpose. Specifically, applying security patches released by the vendor is strongly RECOMMENDED even though that will cause a deviation from the evaluated configuration.

In cases where the requirements and recommendations in this document conflict with those in other sources (such as the online documentation), the information in this Configuration Guide has higher precedence. You MUST follow the steps described here to reach the evaluated configuration, even if other documentation describes different methods.

The usual convention is used in this guide when referring to manual pages that are included in the software distribution. For example, the notation *ls*(1) means that running the *man -S 1 ls* command will display the manual page for the *ls* command from section one of the installed documentation. In most cases, the *-S* flag and the section number may be omitted from the command, they are only needed if pages with the same name exist in different sections.

1.3 What is a CC compliant system?

A system can be considered to be "CC compliant" if it matches an evaluated and certified configuration. This implies various requirements concerning hardware and software, as well as requirements concerning the operating environment, users, and the ongoing operating procedures.
Strictly speaking, an evaluation according to the CC represents the results of investigation of the security properties of the target system according to defined guidelines. It should not be considered as a guarantee for fitness for any specific purpose, but should provide help in deciding the suitability of the system considering how well the intended use fits the described capabilities. It is intended to provide a level of assurance about the security functions that have been examined by a neutral third party.

1.3.1 Hardware requirements

The hardware MUST be the one of the following IBM systems:

- IBM zSeries model z800, z890, z900, or z990
 executes in VM 5.1 LPAR

- IBM iSeries (SF2) model 520
 machine type 9406
 executes in OS/400 5.3 LPAR

- IBM pSeries (SF2) model 520
 machine type 9111
 executes in static LPAR

- IBM xSeries model 335
 machine type 8676

- IBM eServer model e325 (based on AMD64/Opteron processor)
 machine type 8835

Running the certified software on other similar hardware may result in an equivalent security level, but the certification does not apply if the hardware is different from that used for the testing processes during the evaluation.

1.3.2 Software requirements

The software MUST match the evaluated configuration. In the case of an operating system, this also requires that the installed kernel, system, and application software are the same. The documentation (including this guide) will specify permitted variations, such as modifying certain configuration files and settings, and installing software that does not have the capability to affect the security of the system (typically those that do not require ‘root’ privileges).

1.3.3 Environmental requirements

Stated requirements concerning the operating environment MUST be met. Typical requirements include a secure location for the hardware (protected from physical access by unauthorized persons), as well as restrictions concerning permitted network connections.

For more information about these requirements, please refer to section §1.4 “Requirements for the system’s environment” of this guide.

1.3.4 Operational requirements

The operation of the system MUST be in agreement with defined organizational security policies, to ensure that actions by administrators and users do not undermine the system’s security.
1.4 Requirements for the system’s environment

The security target covers one or more systems running SLES, networked in a non-hostile network, with a well-managed and non-hostile user community. It is not intended to address the needs of a directly Internet-connected server, or the case where services are to be provided to potentially hostile users.

You MUST set up the server (or servers) in a physically secure environment, where they are protected from theft and manipulation by unauthorized persons.

You MUST ensure that all connections to peripheral devices and all network connections are protected against tampering, tapping and other modifications. Using the secured protocols SSHv2 or SSLv3 is considered sufficient protection for network connections. All other connections must remain completely within the physically secure server environment.

All components in the network such as routers, switches, and hubs that are used for communication are assumed to pass the user data reliably and without modification. Translations on protocols elements (such as NAT) are allowed as long as those modifications do not lead to a situation where information is routed to somebody other than the intended recipient system.

If other systems are connected to the network they MUST be configured and managed by the same authority using an appropriate security policy not conflicting with the security policy of the target of evaluation. All links from this network to untrusted networks (such as the Internet) need to be protected by appropriate measures like carefully configured firewall systems that prevent attacks from the untrusted networks.

Be aware that information passed to another system leaves the control of the sending system, and the protection of this information against unauthorized access needs to be enforced by the receiving system. If an organization wants to implement a consistent security policy covering multiple systems on a network, organizational procedures MUST ensure that all those systems can be trusted and are configured with compatible security configurations enforcing an organization wide security policy. How to do this is beyond the scope of this Configuration Guide. If you set up a communication link to a system outside your control, please keep in mind that you will not be able to enforce any security policy for any information you pass to such a system over the communication link or in other ways (for example, by using removable storage media).

Every person that has the ability to perform administrative actions by switching to root has full control over the system and could, either by accident or deliberately, undermine the security of the system and bring it into an insecure state. This Configuration Guide provides the basic guidance how to set up and operate the system securely, but is not intended to be the sole information required for a system administrator to learn how to operate Linux securely.

It is assumed, within this Configuration Guide, that administrators who use this guide have a good knowledge and understanding of operating security principles in general and of Linux administrative commands and configuration options in particular. We strongly advise that an organization that wants to operate the system in the evaluated configuration nevertheless have their administrators trained in operating system security principles and SLES security functions, properties, and configuration.

Every organization needs to trust their system administrators not to deliberately undermine the security of the system. Although the evaluated configuration includes audit functions that can be used to make users accountable for their actions, an administrator is able to stop the audit subsystem and reconfigure it such that his actions no longer get audited. Well trained and trustworthy administrators are a key element for the secure operation of the system. This Configuration Guide provides the additional information a system administrator should obey when installing, configuring and operating the system in compliance with the requirements defined in the Security Target for the Common Criteria evaluation.

1.5 Requirements for the system’s users

The security target addresses the security needs of cooperating users in a benign environment, who will use the system responsibly to fulfill their tasks.
Note that system availability is not addressed in this evaluation, and a malicious user could disable a server through resource exhaustion or similar methods.

The requirements for users specifically include:

- User accounts MUST be assigned only to those users with a need to access the data protected by the system, and who MUST be sufficiently trustworthy not to abuse those privileges. For example, the system cannot prevent data from being intentionally redistributed to unauthorized third parties by an authorized user.
- All users of the system MUST be sufficiently skilled to understand the security implications of their actions, and MUST understand and follow the requirements listed in section §6 "Security guidelines for users” of this guide. Appropriate training MUST be available to ensure this.

It is part of your responsibility as a system administrator to verify that these requirements are met, and to be available to users if they need your help in maintaining the security of their data.

1.6 Overview of the system’s security functions

This section summarizes the security functions that were covered by the evaluation. Please refer to the appropriate sections for information on configuring, using and managing these functions.

1.6.1 Identification and authentication

Pluggable Authentication Module (PAM)

Sections §3.13 "Introduction to Pluggable Authentication Module (PAM) configuration”, §3.14 "Required Pluggable Authentication Module (PAM) configuration” of this guide; and the documentation in /usr/share/doc/pam*/ and the pam(8) man page.

OpenSSH

Section §3.8 ”Setting up SSH” of this guide; and the ssd(8), ssh(1), sshd_config(5) man pages.

vsftpd

Section §3.10 ”Setting up FTP” of this guide; and the vsftpd(8), vsftpd.conf(5) man pages.

su

Sections §3.6 ”Update permissions for ’su’”, §4.3 ”Gaining superuser access” of this guide; and the su(8) man page.

1.6.2 Audit

Sections §3.12 ”Setting up the audit subsystem” and §5.3 ”Configuring the audit subsystem” of this guide; and the laus(7) man page, whose ”SEE ALSO” section points to the remaining LAuS man pages.

1.6.3 Discretionary access control

Sections §6.4 ”Access control for files and directories” and §4.9 ”SYSV shared memory and IPC objects” of this guide.

1.6.4 Object reuse

See the SLES High Level Design document, the kernel automatically ensures that new objects (disk files, memory, IPC) do not contain any traces of previous contents.
1.6.5 Security management and system protection

Chapters §4 "System operation” and §5 "Monitoring, Logging & Audit”.

1.6.6 Secure communication

Section §4.10 "Configuring secure network connections with stunnel” of this guide; and the stunnel(8) man page. Section §3.8 "Setting up SSH” of this guide; and the sshd(8), ssh(1), and sshd_config(5) man pages.

1.7 Overview of security relevant events

The audit subsystem is intended to be the central interface for collecting and viewing the record of security relevant events. The events being monitored by default in the evaluated configuration include:

- All authentication done through the PAM library, including the identity and location (where available) of the user and the success or failure result.
- Use of su(8) to change identity. All actions done as part of a su session are marked in the audit record with the original user's login user ID.
- Adding, changing, or deleting users or groups.
- Changes and change attempts to the contents of security critical files.
- Changes to the access permissions or ownership of any files or IPC objects.
- Binding network ports and accepting connections.

Please refer to section §5 "Monitoring, Logging & Audit” for more information.

2 Installation

The evaluation covers a fresh installation of SLES 9, on one of the supported hardware platforms as defined in section §1.3.1 "Hardware requirements” of this guide.

On the platforms that support virtualization (VM) or secure logical partitioning (LPAR), other operating systems MAY be installed and active at the same time as the evaluated configuration. This is if (and only if) the VM or LPAR configuration ensures that the other operating systems cannot access data belonging to the evaluated configuration or otherwise interfere with its operation. Setting up this type of configuration is considered to be part of the operating environment and is not addressed in this guide.

On the other platforms, the evaluated configuration MUST be the only operating system installed on the server.

2.1 Supported hardware

You MAY attach the following peripherals without invalidating the evaluation results. Other hardware MUST NOT be installed in or attached to the system.

- Any storage devices and backup devices supported by the operating system (this includes hard disks, CD-ROM drives and tape drives).
2 INSTALLATION

- All Ethernet and Token Ring network adapters supported by the operating system. Modems, ISDN and other WAN adapters are not part of the evaluated environment.
- Any printers supported by the operating system.
- Operator console consisting of a keyboard, video monitor, and optionally mouse. Additionally, you MAY directly attach supported serial terminals (see section §4.8 “Using serial terminals” of this guide), but not modems, ISDN cards, or other remote access terminals.

USB keyboards and mice MAY be attached, as some of the supported hardware platforms would otherwise not have supported console input devices. If a USB keyboard or mouse is used, it MUST be connected before booting the operating system, and NOT added later to a running system. Other hot-pluggable hardware that depends on the dynamic loading of kernel modules MUST NOT be attached. Examples of such unsupported hardware are USB and IEEE1394/FireWire peripherals other than mice and keyboards.

2.2 Selection of install options and packages

This section describes the detailed steps to be performed when installing the SLES operating system on the target server.

All settings listed here are REQUIRED unless specifically declared otherwise.

1. It is RECOMMENDED that you disconnect all network connections until the post-install system configuration is finished. You MAY use a network if required for the installation (for example when using a NFS file server instead of CD-ROMs). If you do use a network, you MUST ensure that this network is secure, for example by directly connecting the new system to a standalone NFS server with no other network connections.

2. Verify that the installation CD is an authentic SUSE distribution CD for SLES 9. The original CD is shipped in a sealed sleeve with the label “SUSE LINUX ENTERPRISE SERVER Installation”. If using downloaded ISO images, you MUST verify that the MD5 checksums of the image files are correct. Run `md5sum *.iso` to view the checksums for the downloaded images (note that “RC5” is the name of the final release), and compare them with those shown in this list:

```text
cc419d86f35ff99395ca4de9d967600  SLES-9-1386-RC5-CD1.iso
86e97184aae42ba013ea7460372ffe5  SLES-9-1386-RC5-CD2.iso
f880b3b92acf43ad18259c9437f648d  SLES-9-1386-RC5-CD3.iso
bc7b88f34a8142bacdd41fddd3f3c50  SLES-9-1386-RC5-CD4.iso
7844c76fc9f39a2af9ef6751ec18af60  SLES-9-1386-RC5-CD5.iso
9ef0fdd835e52f53906dff110515eb002  SLES-9-1386-RC5-CD6.iso

bafc5da257b993a4bf8064674cc1db5  SLES-9-ppc-RC5-CD1.iso
61432643f1e6855bb24f802cb4d0efdf  SLES-9-ppc-RC5-CD2.iso
cbec4110b4f214a5b6721d716c63bcf0  SLES-9-ppc-RC5-CD3.iso
bf12e9329e2f465d775d6f57920d453a  SLES-9-ppc-RC5-CD4.iso
7515fb38f36a206c7e98c3df63ebab  SLES-9-ppc-RC5-CD5.iso
0b82bd254796605051428f205917a76  SLES-9-ppc-RC5-CD6.iso

1fb270a7123895abc846a377c3daldfd  SLES-9-x86-64-RC5-CD1.iso
1579ac2c85fe71bc6c68686d638c883d  SLES-9-x86-64-RC5-CD2.iso
5330a150eb51542378de8281f2315a2  SLES-9-x86-64-RC5-CD3.iso
a95b0dd45f378f97e9bc2b12b11  SLES-9-x86-64-RC5-CD4.iso
dc6e0d488e4db6aef32f7aadb7dd  SLES-9-x86-64-RC5-CD5.iso
2324e164faab72df89e4078b6a7c1a0c  SLES-9-x86-64-RC5-CD6.iso
```
2 INSTALLATION

337478017119d6a76577938b3a0f0ff0 SLES-9-s390x-RC5-CD1.iso
04e7b9d8629e1d973230be67b22dc9b7 SLES-9-s390x-RC5-CD2.iso
1a5b5f0d15b4e182d2b23da478725933 SLES-9-s390x-RC5-CD3.iso
cee521c0d1ac6c2e3980da99b45b8652e SLES-9-s390x-RC5-CD4.iso
7fd515da7f5c0d2cfd916ee432da30fd4 SLES-9-s390x-RC5-CD5.iso
74301159228f91a4a2bb78cb507aa SLES-9-s390x-RC5-CD6.iso

You MUST use SUSE LINUX Enterprise Server 9. Make sure that you are using the appropriate version for your platform, refer to section §1.3.1 "Hardware requirements" of this guide for the list of supported hardware and the corresponding version needed.

3. Launch the installer program contained on the CD-ROM. The details of how to do this depend on the hardware platform, please refer to the installation guide that is part of the printed manual accompanying the CD.

For example:

- **xSeries, eServer 325 (Opteron), pSeries:** Insert the first CD and boot from CD-ROM.
- **zSeries, iSeries:** Details depend on the operation mode (VM, LPAR or native). The process generally involves copying the installer onto the server and launching the installer using the host’s management interface.

4. You MAY choose text-mode installation instead of the default graphical installation by pressing the F2 key at the boot prompt, or add the option console=tty1.

You MAY also use a serial console to do a text-mode installation. To do so, connect a serial terminal (or a computer with terminal emulator software; such a computer MUST be appropriately secure) to the server’s serial port, and boot from the SLES CD. When the boot prompt appears, add the option console=ttyS0 (use the appropriate name of the serial device if not using ttyS0) and press ENTER to start the installation.

5. Accept the **end user license** agreement.

6. **Select your language:** choose English (US) to ensure that the messages shown during the installation match those described in this guide.

7. If prompted (due to having Linux installed already), choose **New installation**.

8. Next is the **Installation settings** dialog. Change the settings shown by clicking on the blue headings, or alternatively by choosing the corresponding items from the :

 Mode
 - Choose **New installation**

 Keyboard layout
 - RECOMMENDED: set to match the attached keyboard

 Mouse
 - OPTIONAL: set to match the attached mouse. A mouse is not needed for the evaluated configuration.

Partitioning

You MUST use specific settings for the evaluated configuration, using ext3 file systems with ACL support and including a separate /var/log/ partition (for CAPP-compliant auditing). Select either **Base partition setup on this proposal** or **Create custom partition setup**.

- Configuring a swap partition at least as large as the installed RAM is RECOMMENDED.
- Set up the REQUIRED / (root) and /var/log partitions, and as many additional mounted partitions as appropriate. /var/log REQUIRES at least 100 MB of space in order to be able to install and launch the audit system, but this does not include the additional space needed for saved audit logs, please refer to section §5.3 "Configuring the audit subsystem" of this guide for more information.

It is RECOMMENDED to also use separate partitions for /var, /home and /tmp.
Some configurations need a separate /boot partition. This is usually recognized automatically by the installation program. For pSeries machines, you MUST create a partition of type 41 and at least 2MB in size for boot information, and you do NOT need a separate /boot partition.

The following table shows a RECOMMENDED partitioning scheme together with minimum sizes for the partitions. Using more space is RECOMMENDED:

<table>
<thead>
<tr>
<th>Partition</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>/boot</td>
<td>75 MB</td>
</tr>
<tr>
<td>/</td>
<td>1200 MB</td>
</tr>
<tr>
<td>/tmp</td>
<td>200 MB</td>
</tr>
<tr>
<td>/home</td>
<td>100 MB</td>
</tr>
<tr>
<td>/var</td>
<td>384 MB</td>
</tr>
<tr>
<td>/var/log</td>
<td>100 MB needed for install, >>1GB for use</td>
</tr>
</tbody>
</table>

- Set the file system type of all partitions to ext3, then choose Fstab Options and turn on the Access Control Lists check mark. You MAY activate the additional options "No access time", "Mount read-only", and "Extended User Attributes" as required.

Software

Choose Minimum system (or "Minimum graphical system (without KDE)" if "Minimum system" is not offered as an option), and confirm the choice. Extra packages will be removed during the following hardening steps.

Select Detailed selection and add the following packages to the selection. This is easiest when Filter is set to Search, then you can enter (part of) the package names in the search field and add a check mark to the package in the search result.

The packages marked as OPTIONAL are services that are part of the evaluated configuration but MAY be omitted if you do not need them for your system. Packages containing documentation files or viewers that this document refers to are marked as RECOMMENDED, but you MAY omit them.

The installer will automatically choose an appropriate kernel (single processor or SMP) based on the detected hardware. You MAY override this choice and choose a compatible kernel from the following list manually:

```
kernel-default
kernel-smp
kernel-pseries64
kernel-iseries64
kernel-s390x
```

REQUIRED packages
laus # The Linux Audit System
laus-64bit # ONLY for ppc64 (pSeries, iSeries) systems
pam-laus # Audit-enabled version of the PAM libraries
star # Data archival tool with ACL support

RECOMMENDED packages
texinfo # Info documentation viewer
man-pages # Manual pages
howtoenh # how-to documentation (HTML format)
sles-admin_en # Administrator Manual

OPTIONAL packages
lprng # Print spooler
xinetd # XInetd (only used for vsftpd)
vsftpd # FTP daemon (needs xinetd)
stunnel # set up encrypted SSL tunnels

Booting

keep default (no other OS is permitted on the server).
Time zone
- RECOMMENDED: keep hardware clock time as UTC.
- RECOMMENDED: set the time zone as appropriate for the server location.

Language
choose English (US) to ensure that the messages shown during the installation match those described in this guide.

9. To start the installation: press the Accept and Yes, install buttons.

10. Installation will proceed. Insert the CDs as prompted by the installer.

11. The installer will reboot to continue running on the installed system.

 It is RECOMMENDED that you now reconfigure the system to boot from the newly installed system only (typically the first hard disk) and disable all other boot methods such as CD-ROM, network boot (PXE) or floppy disk. If you choose not to do that, you MUST remove the installation CD-ROM from the drive before rebooting.

12. The installer will continue in text mode, confirm the explanatory text about this.

13. Password for "root", the administrator
 - choose according to the password policy (§6.3)
 - in Expert Options, set Password Encryption: MD5

14. Network Configuration: Configure all installed network cards (zero or more) as appropriate for the platform. In the case of virtual network cards on zSeries or iSeries, these options are not available.

 It is RECOMMENDED that you disconnect all network connections until the post-install system configuration is finished. You MAY use a network if required for the installation (for example when using a NFS file server instead of CD-ROMs). If you do use a network, you MUST ensure that this network is secure, for example by directly connecting the new system to a standalone NFS server with no other network connections.

 You MUST NOT install, connect or configure modems or ISDN adapters.

 Use the Change... menu to configure the Network interfaces.

 For each network card, select Change..., then Edit the network settings. The following options MUST be used for non-virtual network cards:
 - Use Static address setup for each card, and configure an appropriate IP Address and Subnet mask. You MUST NOT use DHCP.
 - Select the Host name and name server dialog, and make the following changes:
 - Disable the Change host name via DHCP check box.
 - Disable the Update name servers via DHCP check box.
 - RECOMMENDED: set the system’s Host name.
 - OPTIONAL: configure Name server and Domain search entries as required.
 - In the Routing dialog, configure the Default gateway and/or static routes in the routing table as required. You MAY enable IP forwarding.
 - Use the Next button to continue.

15. In the Test Internet Connection dialog, select No, Skip This Test. Use the Next button to continue.

16. In the Service Configuration dialog, you MAY change the CA Management settings if needed. The OpenLDAP Server MUST be disabled.

17. In the User Authentication Method dialog, select the Local authentication method.
18. In the Add a New Local User dialog, create an account for one of the administrators (RECOMMENDED: use the real name of the person doing the installation).

- Fill out the First name, Last name, User login and Password fields. The password MUST be chosen as described in section §6.3 "Password policy" of this guide.
- It is RECOMMENDED to activate Receive System Mail for administrators.
- You MUST NOT activate "Auto Login".
- Open the Password settings dialog, and edit the settings according to the parameters described in section §3.15 "Setting up login controls" of this guide:

 Issue warning how many days before password expiration? 5
 How many days after password expires is the login usable? -1
 Maximum number of days for the same password 60
 Minimum number of days for the same password 1

 The "Expiration date" MAY be left blank. Close the dialog.

- Open the Details dialog, select the Additional group pane and add membership in the group trusted for this administrator. Close the dialog.
- You MAY select User Management to create additional administrator accounts at this time, but it is RECOMMENDED to do this later, after setup of the evaluated configuration has been completed.
- Use the Next button to continue.

20. In the Hardware Configuration dialog, you MUST NOT enable 3D Acceleration.

21. Confirm the Installation Completed dialog to start the system.

22. Wait for the freshly installed system to start, and verify that the issue message printed above the login prompt matches the installed system type and version. Then log in as "root" and proceed with the next section.

3 Secure initial system configuration

After the initial installation, the operating system is not yet in the evaluated configuration. The instructions in this section explain how to achieve that configuration.

- Install the required updates, including post-SLES9 updates.
- Either install the certification-sles-ibm-eal4 RPM and run the sles-eal4 script according to the instructions in section §3.2 "Automated configuration of the system" of this guide; or do the required actions manually.
- Reboot.

After software upgrades or installation of additional packages, these steps MUST be re-done or at least re-checked to ensure that the configuration remains secure.

Log in as user 'root' on the system console for these steps.
3.1 Prerequisites

3.1.1 Filesystem configuration

CD/DVD devices MUST be accessed using the iso9660 filesystem type. Using the subfs automounter is NOT permitted in the evaluated configuration. See also section §4.6 "Mounting filesystems" of this guide, specifically that writable removable media are NOT permitted in the evaluated configuration.

Skip this section if the system does not have any removable media storage devices.

You MUST edit the /etc/fstab file and update the filesystem type and options. In each line mentioning the filesystem type subfs, change the filesystem type to iso9660 and the options to ro,nodev,nosuid,noauto. The following example shows a sample /etc/fstab line:

```
/dev/cdrom /media/cdrom iso9660 ro,nodev,nosuid,noauto 0 0
```

Note that the device name is hardware dependent, and may be /dev/dvd, /dev/cdrecorder or similar. Floppy disks usually do not contain iso9660 file systems, it is RECOMMENDED to delete or disable entries referring to floppy disks.

Repeat these steps for each entry if you have multiple CD/DVD/floppy drives installed.

After modifying the /etc/fstab file, re-mount the filesystems to activate the changes by running the following commands:

```
umount /media/*
mount -a
```

3.1.2 Getting required updates

You MAY make files available to other SLES systems in the secure network and use the YAST2 online update mechanism to retrieve the files from this local mirror, but you MUST NOT connect to the Internet from the target system at this time.

The ISO images and packages are available from the SUSE maintenance web:

```
http://portal.suse.com/
```

Access is restricted to registered users, use your user name and password to log in. Make sure that you have registered your SLES9 copy using the enclosed registration key.

Navigate to the section Patch Support Database, and use the Search function to locate the files needed. Set the search scope to Fulltext search in PSDB. As search terms, use either the package name (such as "amtu"), and/or the keywords "IBM EAL4" for a list of packages related to the evaluation.

Note that the yast2-installation package uses the architecture specification noarch that usually indicates a platform independent package, but the file content is different for each platform despite the identical file name. Make sure that you use the correct one as listed in the table below.

```
# i386 (xSeries)
1e404439355ec3fa3f3a86b31409a9fb aaa_base-9-29.13.i586.rpm
c42d123078ee453d1cbf088ad30eacel amtu-0.1-1.6.i586.rpm
8162ab5c488c487ac67eccb53b4dfa96 glibc-locale-2.3.3-98.31.i586.rpm
933a87f09e9bac7b7bdb122b0fd57e4 kernel-default-2.6.5-7.111.30.i586.rpm
44301f5fc37934f585ae83c54c1c9c4a kernel-smp-2.6.5-7.111.30.i586.rpm
```
3 SECURE INITIAL SYSTEM CONFIGURATION

73b31c4f482d74e82f3c33fe9cb2286b liby2util-2.9.25-0.2.i586.rpm
35b7e69c3e1d980103ee8a9326b45949 mminitrd-1.0-199.53.i586.rpm
d809dc2216d23f5b950e8228484b21f89 net-tools-1.60-543.6.i586.rpm
81005198981cc98ab06f6e82dcf0e8ce openssl-0.9.7d-15.13.i586.rpm
190208b5bcbf932f26357ef3c4f56899 permissions-2004.7.30-0.2.i586.rpm
c92b8ad412433fcded88738c241e06d yast2-installation-2.9.89-0.2.noarch.rpm
b47cf6b6112a3cf7cc2f2194a98ac0 timezone-2.3.3-98.31.i586.rpm
cce45b2e572d3e9c53b3ce774072e90793 yast2-network-2.9.59-0.2.i586.rpm
4b8df352876407a909355f2c841e6ed955caa9 liby2util-2.9.25-0.2.ppc.rpm
978985d9b08d2fb394d74170e02a99ed amtu-0.1-1.6.ppc.rpm
120x552 # ppc (pSeries or iSeries)
1b446846fe66150d04cfe8d7b4c0e6 timezone-2.3.3-98.31.i686.rpm
173d6766f7b7708d11c78a9eb215ded73e glibc-locale-2.3.3-98.31.ppc.rpm
120x528 # s390x (zSeries)
12634d3f5e11b822cb3853f03c3e3cc kernel-pseries64-2.6.5-7.111.30.ppc.rpm
85afdeac5fdeae8972373a5199181e16 liby2util-2.9.25-0.2.ppc.rpm
f4e5957e9e0d6a906d6b39db7b9cd bclacc1d2a10776233e5589484aff11d yast2-installation-2.9.89-0.2.noarch.rpm
120x492 # x86_64 (eServer 325 Opteron)
76d4ec70c1412e2a460f5472a8c82f4d yast2-network-2.9.59-0.2.ppc.rpm
709c541b5e42113f9441aa99c61183 zlib-1.2.1-70.6.ppc.rpm
518ada3237bb12f006cba36987026a6 zlib-1.2.1-70.6.s390x.rpm

aaa_base-9-29.13.ppc.rpm
aaa_base-9-29.13.s390x.rpm
aaa_base-9-29.13.x86_64.rpm
atmu-0.1-1.6.ppc.rpm
atmu-0.1-1.6.s390x.rpm
atmu-0.1-1.6.x86_64.rpm
liby2util-2.9.25-0.2.ppc.rpm
liby2util-2.9.25-0.2.s390x.rpm
liby2util-2.9.25-0.2.x86_64.rpm
net-tools-1.60-543.6.ppc.rpm
net-tools-1.60-543.6.s390x.rpm
net-tools-1.60-543.6.x86_64.rpm
openssl-0.9.7d-15.13.ppc.rpm
openssl-0.9.7d-15.13.s390x.rpm
openssl-0.9.7d-15.13.x86_64.rpm
permissions-2004.7.30-0.2.ppc.rpm
permissions-2004.7.30-0.2.s390x.rpm
permissions-2004.7.30-0.2.x86_64.rpm
release-notes-9.1-8.40.ppc.rpm
release-notes-9.1-8.40.s390x.rpm
release-notes-9.1-8.40.x86_64.rpm
submount-0.9-33.6.ppc.rpm
submount-0.9-33.6.s390x.rpm
submount-0.9-33.6.x86_64.rpm
3 SECURE INITIAL SYSTEM CONFIGURATION

The glibc-devel packages are OPTIONAL, but if you do install the development library you MUST use the updated version.

You MUST use exactly one of the kernels from the following list for the evaluated configuration, as appropriate for your hardware:

- kernel-default
- kernel-smp
- kernel-pseries64
- kernel-s390x

All other packages (other than glibc-devel and the kernel) are REQUIRED.

Note that both the iSeries and pSeries systems use the kernel named kernel-pseries64 in the evaluated configuration.

You MUST verify the MD5 sums against those shown in the list. Run the following command to display those of the downloaded files:

 md5sum *.rpm

Download the CD-ROM images and RPMs using an Internet-connected computer, and transfer them to the system being installed, for example using a CD-R disk.

Do NOT install the downloaded packages yet.

It is RECOMMENDED that you store the RPM packages in a separate directory (this guide uses /root/rpm/) to avoid confusion with similarly named packages from installation CDs.

3.2 Automated configuration of the system

The certification-sles-ibm-eal4 package SHOULD be installed initially to achieve the evaluated configuration. This RPM package contains EAL4 specific configuration files, updates to the online manuals, and scripts that set up the evaluated configuration.

Install the RPM as follows:
rpm -Uvh /root/rpm/certification-sles-ibm-eal4*.noarch.rpm

The automated installation depends on having the correct versions available for those packages that MUST be updated or added to the evaluated configuration.

You MUST use the versions of the packages downloaded from the maintenance web exactly as listed in section §3.1.2 "Getting required updates" of this guide. Be careful to pay close attention that the version number and architecture name matches exactly for each package.

Copy (or move) the update RPMs from your download directory to the location expected by the script. You MUST include all REQUIRED packages and MAY add the OPTIONAL packages as well. Use the following command:

 cp /root/rpm/*.rpm /usr/lib/eal4/rpm/

Verify that the directory now contains all packages listed as REQUIRED in section §3.1.2 "Getting required updates", and that they match the architecture you are installing on. Use the following command to show the directory contents:

 ls -l /usr/lib/eal4.rpm/

You MAY copy multiple kernels into the directory, the script will install only the appropriate one.

The certification-sles-ibm-eal4.rpm package contains a setup script that implements the evaluated configuration when run. You MAY add the -a switch to run the script automatically, but be aware that this will change the configuration with with no prompting. Run it with no arguments to use the default interactive mode (with prompts for confirmation before making changes):

 /usr/lib/eal4/bin/sles-eal4

When running the script in interactive mode, you MUST permit it to make each change unless the step is clearly documented to be OPTIONAL.

It is RECOMMENDED that you use the sles-eal4 script to configure the system, but you MAY also perform the steps listed in sections §3.3 to §3.17 of this guide manually instead.

If the script fails with an error message, verify that all the steps listed in section §3.1.1 "Prerequisites" of this guide have been followed. If the message indicates that the PAM library is not audit enabled, please follow the instructions in section §3.12.4 "Ensuring that the PAM library is audit enabled" of this guide to reinstall the library. Then re-run the script.

The certification-sles-ibm-eal4 RPM contains the following EAL4 specific configuration files:

 /etc/permissions.eal4

We RECOMMEND that you also use the sles-eal4 script to reset the configuration to its initial state after any updates, but you MAY also do this manually.

WARNING: The sles-eal4 script will reboot the system as the final step in the process, as described in the manual instructions in section §3.17 "Reboot and initial network connection". Remember to remove any CD-ROM from the drive and/or configure the system to boot from hard disk only.

If the script has completed successfully, the remaining steps in this chapter were done automatically; you MAY skip ahead to section §4 "System operation" of this guide.
3.3 Add and remove packages

The minimal install still contains some packages that MUST be removed for the evaluated configuration. Use `rpmqpack` to get a list of installed packages, and `rpm -e PACKAGE_NAME ...` to remove all packages EXCEPT those listed here.

Some packages are listed as RECOMMENDED or OPTIONAL in section §2.2 ”Selection of install options and packages”. If you did not select all of those, some of the following packages will not be present on your system.

The evaluated configuration including all RECOMMENDED and OPTIONAL packages consists of the following packages:

```
all architectures:

aaa_base    netcfg
aaa_skel    openldap2-client
acl         openslp
amtu        openssh
ash         openssl
at          pam-laus
attr        pam-modules
autoyast2-installation parted
bash        pciutils
bc           pcre
bzip2       perl
certification-sles-ibm-eal4 perl-Config-Crontab
core-release permissions
coreutils    popt
cpio         postfix
cracklib     procps
cron         psmisc
curl         pwdutils
cyrus-sasl   readline
db           release-notes
device-mapper resmgr
devs         rpm
dialog       scsi
diffutils    sed
dosfstools   sitar
e2fsprogs    sles-admin_en
ed            sles-release
evms         star
file         stunnel
filesystem   submount
fillup       suse-build-key
findutils    sysconfig
gawk         syslogd
gdbm         sysvinit
glibc        tar
glibc-locale tcpd
gpg          telnet
gpm          terminfo
grep         texinfo
groff        timezone
gzip         udev
```
3 Secure Initial System Configuration

hdparm
heimdal-lib
hfsutils
hotplug
howtoenh
hwninfo
info
insserv
iproute2
iputils
kbd
ksymoops
laus
ldapcpplib
less
libacl
libattr
libgcc
libselinux
libstdc++
libxcrypt
libxml2
liby2util
logrotate
lprng
lsof
lukemftp
m4
mailx
man
man-pages
mingetty
mknitrd
mktemp
module-init-tools
ncurses
net-tools
netcat

additional on x86:
either the "kernel-default" or the "kernel-smp" kernel

grub
isapnp
lilo

additional on x86_64 (Opteron):
either the "kernel-default" or the "kernel-smp" kernel

bzip2-32bit
heimdal-lib-32bit
ncurses-32bit
 crackers-32bit
iperqbalance
openssl-32bit
openssl-32bit
pcres-32bit

3 Secure Initial System Configuration

<table>
<thead>
<tr>
<th>Package</th>
<th>32-bit</th>
<th>64-bit</th>
<th>64-bit</th>
<th>32-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>e2fsprogs</td>
<td>libacl</td>
<td>perl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>file</td>
<td>libattr</td>
<td>popt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gdbm</td>
<td>libselinux</td>
<td>readline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>glibc</td>
<td>libxcrypt</td>
<td>resmgr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>glibc-local</td>
<td>libxml2</td>
<td>utempter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grub</td>
<td>lilo</td>
<td>zlib</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional on ppc (pSeries):

<table>
<thead>
<tr>
<th>Package</th>
<th>64-bit</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bzip2</td>
<td>libacl</td>
<td>pcre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cracklib</td>
<td>libattr</td>
<td>pdisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyrus-sasl</td>
<td>libgcc</td>
<td>perl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>db</td>
<td>libselinux</td>
<td>popt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e2fsprogs</td>
<td>libstdc++</td>
<td>ppc64-utils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>file</td>
<td>libxcrypt</td>
<td>readline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gdbm</td>
<td>libxml2</td>
<td>resmgr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>glibc</td>
<td>lilo</td>
<td>utempter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>heimdal-lib</td>
<td>ncurses</td>
<td>zlib</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kernel-pseries64</td>
<td>openssl2-client</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>laus</td>
<td>openssl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional on ppc (iSeries):

<table>
<thead>
<tr>
<th>Package</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>baselibs</td>
<td>kernel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bzip2</td>
<td>laus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cracklib</td>
<td>libacl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyrus-sasl</td>
<td>libattr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>db</td>
<td>libgcc</td>
<td>perl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e2fsprogs</td>
<td>libstdc++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>file</td>
<td>libxcrypt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gdbm</td>
<td>libxml2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glibc</td>
<td>lilo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>heimdal-lib</td>
<td>ncurses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kernel-pseries64</td>
<td>openssl2-client</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>laus</td>
<td>openssl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional on s390 (zSeries):

<table>
<thead>
<tr>
<th>Package</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bzip2</td>
<td>kernel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cracklib</td>
<td>laus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyrus-sasl</td>
<td>libacl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>db</td>
<td>libattr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e2fsprogs</td>
<td>libgcc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>file</td>
<td>libselinux</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gdbm</td>
<td>libxml2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glibc</td>
<td>libxcrypt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glibc-local</td>
<td>ncurses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>heimdal-lib</td>
<td>openssl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The `pam` package will be listed in the RPM database as being installed, but all of its files were overwritten by the `pam-laus` package. You MUST NOT try to uninstall, reinstall or update the `pam` package.

In addition to these packages, certain additional software from the SLES CDs MAY be installed without invalidating the evaluated configuration. The rules described in the section §4.4 "Installation of additional software" MUST be followed to ensure that the security requirements are not violated.
The following packages are examples of tolerated packages that MAY be added to the system according to these rules. Note that the software contained in these packages is not intended to be used with ‘root’ privileges, but the presence of the packages does not invalidate the evaluated configuration. The \texttt{sles-eal4} script does not remove these packages if they are installed on the system:

\begin{verbatim}
autoconf libattr-devel perl-HTML-Tagset
automake libgcc perl-IO-Stty
binutils libstdc++-devel perl-IO-Tty
binutils-32bit libstdc++-devel-32bit perl-Mon
binutils-64bit libstdc++-devel-64bit perl-Net-SNMP
cpp make perl-Net_SSLeay
cvs ncurses-devel perl-Tie-IXHash
expect ncurses-devel-32bit perl-Time-Period
flex ncurses-devel-64bit perl-TimeDate
flex-32bit openssl-devel perl-Tk
flex-64bit openssl-devel-32bit perl-URI
gcc openssl-devel-64bit perl-gettext
gcc-64bit pam perl-libwww-perl
gcc-c++ pam-devel strace
ghlib pam-laus-devel strace-32bit
glibc-devel patch strace-64bit
glibc-devel-32bit perl-Convert-BER tcl
glibc-devel-64bit perl-Crypt-DES tcl-32bit
kernel-source perl-DateManip tcl-64bit
laus-devel perl-Digest-HMAC tcl-devel
laus-devel-32bit perl-Digest-SHA1 tcsh
laus-devel-64bit perl-Expect tk
laus-devel-64bit perl-HTML-Parser
\end{verbatim}

3.4 Disable services

Note: The system runlevel as specified in the ‘initdefault’ entry in \texttt{/etc/inittab} MUST remain at the default setting of ‘3’ for these steps to be valid.

The following services are REQUIRED for runlevel 3:

\begin{verbatim}
atd audit
coldplug cron
hwscan network random
rpmconfigcheck syslog
\end{verbatim}

The following services are OPTIONAL for runlevel 3:

\begin{verbatim}
hotplug kbd lpd postfix sshd xinetd
\end{verbatim}
3 SECURE INITIAL SYSTEM CONFIGURATION

You MUST ensure that all REQUIRED services are active. You MAY enable or disable services from the OPTIONAL list as suitable for your configuration. All other services MUST be deactivated.

Use `insserv ServiceName` to activate a service, and `insserv -r ServiceName` to deactivate it.

Make sure that the audit subsystem is activated. If `auditd` is not running, all logins are automatically disabled in the evaluated configuration as required by CAPP. If it is missing, create the link with `insserv audit`.

3.4.1 Disable usbfs

The `usbfs` file system is not permitted in the evaluated configuration and MUST be disabled. Note that the only permitted USB devices are keyboards and mice connected at boot, and these also work without `usbfs` for the supported hardware. Please refer to sections §2.1 "Supported hardware" and §4.6 "Mounting filesystems" of this guide for more information.

`usbfs` is activated in three different places in two startup files, use the following command to verify the current content:

```
grep -n 'mount.*usb' /etc/init.d/kbd /etc/hotplug/usb.rc
```

Here is the output of the `grep` command before modification:

```
/etc/init.d/kbd:88:
    mount -n -t usbfs usbfs /proc/bus/usb >/dev/null 2>&1
/etc/hotplug/usb.rc:181:
    mount /proc/bus/usb
/etc/hotplug/usb.rc:185:
    mount -t usbfs usbfs /proc/bus/usb
/etc/hotplug/usb.rc:296:
    umount /proc/bus/usb >/dev/null 2>&1
```

Either use a text editor to edit the files manually (replacing each instance of `mount` (but not `umount`) with the string `: mount`), or use the following automated method:

```
perl -pi.bak -e 'next if /umount/; s/mount.*usb/: $&/;' /etc/init.d/kbd /etc/hotplug/usb.rc
```

Make sure that you use the "colon space" sequence `:` to disable the commands and not the hashmark `#` comment character, you will get syntax errors if only comment lines are left inside a conditional branch. You do not need to change the `umount` command.

After the modification, the file content MUST be as follows, verify by re-running the `grep` command:

```
/etc/init.d/kbd:88:
    : mount -n -t usbfs usbfs /proc/bus/usb >/dev/null 2>&1
/etc/hotplug/usb.rc:181:
    : mount /proc/bus/usb
/etc/hotplug/usb.rc:185:
    : mount -t usbfs usbfs /proc/bus/usb
/etc/hotplug/usb.rc:296:
    umount /proc/bus/usb >/dev/null 2>&1
```

You MUST NOT manually mount the `usbfs` file system.
3.5 Remove SUID/SGID root settings from binaries

Use of the SUID bit on binaries (to run with root privileges, a.k.a. "setuid bit") MUST be limited to those shown in the following list:

```
/bin/ping
/bin/su
/usr/bin/at
/usr/bin/chage
/usr/bin/chfn
/usr/bin/chsh
/usr/bin/crontab
/usr/bin/gpasswd
/usr/bin/lpq
/usr/bin/lpr
/usr/bin/lprm
/usr/bin/lpstat
/usr/bin/passwd
```

The other binaries that were installed with the SUID bit set MUST have this bit removed. Administrators can still run these binaries normally, but they are not available for ordinary users.

There are also a number of SGID files on the system that are needed:

```
/usr/sbin/postdrop   # group "maildrop"
/usr/sbin/postqueue  # group "maildrop"
/usr/sbin/utempter   # group "tty"
```

Similarly, the SGID bit MUST NOT be used to give group "root" privileges to any binary.

The SLES permission mechanism MUST be used to set permission bits appropriately. First make sure that no SUID/SGID programs are present on the system:

```
find / !(-fstype ext3 -prune -false) -o 
 -type f !(-perm -4000 -o -perm -2000) 
 -exec chmod u-s,g-s {} \; -print
```

Make sure that `/etc/sysconfig/security` has the following two variables set:

```
CHECK_PERMISSIONS=set
PERMISSION_SECURITY="eal4"
```

Then run `chkstat -set /etc/permissions.eal4` to set the needed SUID and SGID bits.

3.6 Update permissions for 'su'

The 'su' binary MUST be restricted to members of the 'trusted' group. This will be enforced both with PAM configuration (configured later) and the binary’s permissions.

```
chgrp trusted /bin/su
chmod 4750 /bin/su
```

When running the `chkstat` command as described above, this will be configured automatically.

You MUST have at least one user account other than 'root' configured to be a member of the 'trusted' group, otherwise system administration will ONLY be possible from the system console.
3.7 Disable root login over the network

Login from the network with user ID 0 ('root') MUST NOT be permitted over the network. Administrators MUST use an ordinary user ID to log in, and then use the `/bin/su -` command to switch identities. For more information, refer to section §4.3 "Gaining superuser access" of this guide.

It is RECOMMENDED that you remind administrators of this by adding the following alias to the bash configuration file `/etc/bash.bashrc.local` that disables the pathless `su` command:

```
alias su="echo \"Always use '/bin/su -' (see Configuration Guide)\""
```

This alias can be disabled for the root user in `/root/.bashrc`:

```
unalias su
```

The restriction for direct root logins is enforced through two separate mechanisms. For network logins using ssh, the `PermitRootLogin no` entry in `/etc/ssh/sshd_config` MUST be set (see next section). Console and serial terminal logins use the `pam_securetty.so` PAM module in the `/etc/pam.d/login` file that verifies that the terminal character device used is listed in the file `/etc/securetty`.

The file `/etc/securetty` MUST NOT be changed from the secure default settings. The original contents are the following:

```
# This file contains the device names of tty lines (one per line,
# without leading /dev/) on which root is allowed to login.
# for devfs:
vc/1
vc/2
vc/3
vc/4
vc/5
vc/6
```

3.8 Setting up SSH

SSH protocol version 1 MUST be disabled. It has known security deficiencies.

The ssh client MUST NOT be set up SUID root (the SUID bit was removed in the post-install configuration). This prevents the use of some authentication methods normally supported by OpenSSH, but does not affect the evaluated configuration that uses password authentication exclusively.

The SSH Server MUST be configured to reject attempts to log in as root.

The permitted authentication mechanisms are per-user (nonempty) passwords and per-user DSS public key authentication. All other authentication methods MUST be disabled.

The setting `PAMAuthenticationViaKbdInt` MUST be disabled, since this would otherwise circumvent the disabled root logins over the network.

This results in the following option set for the SSH daemon that MUST be set in `/etc/sshd/sshd_config`:
Cryptographic settings. Disallow the obsolete (and
insecure) protocol version 1, and hardcode a strong
cipher.
Protocol 2
Ciphers 3des-cbc

Configure password-based login. This MUST use the PAM
library exclusively, and turn off the builtin password
authentication code.
UsePAM yes
ChallengeResponseAuthentication yes
PasswordAuthentication no
PermitRootLogin no
PermitEmptyPasswords no

No other authentication methods allowed
IgnoreRhosts yes
RhostsRSAAuthentication no
HostbasedAuthentication no
PubkeyAuthentication no
RSAAuthentication no
KerberosAuthentication no
GSSAPIAuthentication no

Other settings, MAY change "X11Forwarding" to "yes"
X11Forwarding no
Subsystem sftp /usr/lib/ssh/sftp-server

All other options MUST NOT be changed from the defaults or from those settings specified here. Specifically, you
MUST NOT add other authentication methods (AFS, Kerberos, host-based) to those permitted here.

3.9 Setting up xinetd

The xinetd super server is used to start the FTP daemon. The defaults entry in the /etc/xinetd.conf file specifies the log
file and the data that is to be logged:

defaults
{
 log_type = FILE /var/log/xinetd.log
 log_on_success = PID HOST EXIT DURATION
 log_on_failure = HOST ATTEMPT
 instances = 2
}

The xinetd.conf(5) man page contains more information on xinetd and configuration examples.

3.10 Setting up FTP

The evaluated configuration includes OPTIONALLY includes FTP services. Note that FTP does not provide support
for encryption, so this is only RECOMMENDED for anonymous access to non-confidential files. If you do not
specifically need FTP, it is RECOMMENDED that you disable the vsftpd(8) service.
The FTP server is started via `xinetd`, see `xinetd(8)`. The following entry is the only active configuration entry in `/etc/xinetd.conf`:

```
service ftp
{
    socket_type = stream
    protocol = tcp
    wait = no
    user = root
    server = /usr/sbin/vsftpd
    instances = UNLIMITED
}
```

The `vsftpd` service uses several additional configuration files. In `/etc/vsftpd.conf` the configuration of the ftp daemon is specified. In addition, the file `/etc/ftpusers` is used for access control. Users listed in that file can NOT log in via FTP. This file initially contains all system IDs and the root user. It can be augmented with other IDs according to the local needs, but the `root` entry MUST NOT be removed. The `ftpusers` file is not checked by the ftp daemon itself but by a PAM module. Please see section §3.14 “Required Pluggable Authentication Module (PAM) configuration” of this guide for details.

The setup of `/etc/vsftpd.conf` depends on the local needs. Please refer to `vsftpd.conf(5)` for details.

The default configuration permits only anonymous FTP. This setting is therefore only suitable for distribution of public files for which no read access control is needed.

```
anonymous_enable=YES
local_enable=NO
```

It is RECOMMENDED disabling anonymous FTP if you do not need this functionality with the following `/etc/vsftpd.conf` setting:

```
anonymous_enable=NO
```

You MAY enable FTP authentication for local user accounts. The corresponding setting in `/etc/vsftpd.conf` is:

```
local_enable=YES
```

It is RECOMMENDED to use the more secure alternatives `sftp(1)` or `scp(1)` to copy files among users, and to use FTP only for legacy applications that do not support this alternative.

3.11 Setting up Postfix

The default settings of the postfix MTA are in accordance with the EAL4 requirements. It is RECOMMENDED that you set up an alias for root in the `/etc/aliases` file. Specify one or more user names of administrators to whom mail addressed to `root` will be forwarded.

For example, run the following commands (assuming you are starting from the default Postfix configuration) to forward root mail to user “jdoe”:

```
echo "root: jdoe" >>/etc/aliases
newaliases
postfix reload
```

Please see `postfix(1)`, `master(8)`, `aliases(5)`, `newaliases(1)`, and the documentation in `/usr/share/doc/packages/postfix/html/` for details.
3.12 Setting up the audit subsystem

This section describes only the initial setup and default configuration of the audit subsystem. Please refer to section §5.3 "Configuring the audit subsystem" of this guide for information about how it works and what changes MAY be made to the configuration.

This section describes the further changes that MUST be made to reach the initial state of the evaluated configuration.

3.12.1 Setting up the audit configuration files

For all platforms, it is RECOMMENDED to use the following settings in the /etc/sysconfig/audit file:

```
AUDIT_ALLOW_SUSPEND=1
AUDIT.Attach_ALL=0
AUDIT_MAX_MESSAGES=1024
AUDIT_PARANOIA=0
```

The sles-eal4 script automatically sets up this configuration.

The appendix of this guide lists the RECOMMENDED content of the audit configuration files. The laus package by default installs these files with the RECOMMENDED contents:

```
/etc/audit/audit.conf
/etc/audit/filter.conf
/etc/audit/filesets.conf
```

3.12.2 Starting auditd at boot as a system service

The evaluated configuration runs auditd as a standard daemon service launched as part of the normal startup sequence, this is activated with the following command:

```
insserv audit
```

3.12.3 Starting auditd in fail-secure mode from init (OPTIONAL)

Running auditd as a system service is the standard and recommended method, other system components such as cron and atd are also launched in this way.

However, if auditd is killed or unexpectedly terminates, audit messages will be lost until the administrator restarts the service. This failure mode does not violate CAPP requirements, because only the sysadmin can kill the audit daemon. The only failure mode addressed by CAPP concerns running out of disk space, and that is handled directly by auditd. Any other abnormal termination would indicate a serious bug that should be investigated, reported and fixed.

If you want to ensure that an instance of auditd will always be running even in case of these unusual failure modes, you MAY set up an alternative configuration and launch auditd via the init daemon.

To do this, disable the audit system service, then create an entry in the file /etc/inittab and activate it:

```
insserv -r audit
echo "au:35:respawn:/etc/init.d/audit inittab" >> /etc/inittab
init q
```

This operating mode ensures that an instance of auditd will always be running, because init will automatically restart auditd immediately if it terminates for any reason. If init cannot restart auditd in this way, it will generate a syslog warning message and temporarily deactivate the inittab entry for five minutes.
3.12.4 Ensuring that the PAM library is audit enabled

The installation media contain two copies of the PAM library, the `pam` package contains the default version without audit capability, and the `pam-laus` package the audit-capable one. The set of files included in these packages is the same, but the file content differs.

In the initial installation, the package `pam-laus` was added to the list of packages to install. Due to installation order side effects, the wrong version of the PAM library may be active after the initial install.

You MUST verify that the active PAM library is audit enabled, it MUST link to the `liblaus.so` shared library. Use the following command to check:

```
grep laus_open 'ldd /bin/login | awk '/libpam.so/ { print $3 }''
```

The expected output is the following line (the initial path is `lib64/` instead of `/lib/` on some platforms):

```
Binary file /lib/libpam.so.0 matches
```

If the `grep` command produces no output, you MUST reinstall the `pam-laus` package from CD #2 of the installation media. Use the following command (using your system’s architecture instead of `i586` as appropriate) to reinstall it:

```
# ‘cd’ to the directory containing the RPM file,
# then reinstall the package:
rpm --oldpackage --force --nodeps -Uvh pam-laus-0.77-4.3.i586.rpm
```

You MUST NOT reinstall the non-audit-enabled `pam` library.

3.13 Introduction to Pluggable Authentication Module (PAM) configuration

The PAM subsystem is responsible for maintaining passwords and other authentication data. Because this is a security-critical system, understanding how it works is very important. In addition to the `pam`(8) manual page, full documentation is available in `/usr/share/doc/packages/pam/text/`, and includes "The Linux-PAM System Administrator’s Guide" (`pam.txt`) as well as information for writing PAM applications and modules. Detailed information about modules is available in `/usr/share/doc/packages/pam/modules/README.pam`, as well as manual pages for individual modules, such as `pam_pwcheck`(8).

The PAM configuration is stored in the `/etc/pam.d/` directory. Note that the documentation refers to a file `/etc/pam.conf` that is not used by SLES (PAM was compiled to ignore this file if the `/etc/pam.d/` directory exists).

Each service (application) that uses PAM for authentication uses a `service-name` to determine its configuration, stored in the `/etc/pam.d/SERVICE_NAME` file. The special `service-name` OTHER (case insensitive) is used for default settings if there are no specific settings.

The configuration file for the service contains one entry for each module, in the format:

```
module-type control-flag module-path args
```

Comments MAY be used extending from `#` to the end of the line, and entries MAY be split over multiple lines using a backslash at the end of a line as a continuation character.

The `module-type` defines the type of action being done. This can be one of four types:
auth
Authenticates users (determines that they are who they claim to be). It can also assign credentials, for example additional group memberships beyond those specified through /etc/passwd and /etc/groups. This additional functionality MUST NOT be used.

account
Account management not related to authentication, it can also restrict access based on time of day, available system resources or the location of the user (network address or system console).

session
Manages resources associated with a service by running specified code at the start and end of the session. Typical usage includes logging and accounting, and initialization such as auto mounting a home directory.

password
Used for updating the password (or other authentication token), for example when using the passwd(1) utility to change it.

The control-flag specifies the action that will be taken based on the success or failure of an individual module. The modules are stacked (executed in sequence), and the control-flags determine which final result (success or failure) will be returned, thereby specifying the relative importance of the modules.

Stacked modules are executed in the order specified in the configuration file.

The control-flag can be specified as either a single keyword, or alternatively with a more elaborate syntax that allows greater control. SLES uses only the single keyword syntax by default.

The following keywords control how a module affects the result of the authentication attempt:

required
If this module returns a failure code, the entire stack will return failure. The failure will be reported to the application or user only after all other modules in the stack have been run, to prevent leakage of information (for example, ask for a password even if the entered username is not valid).

requisite
Same as required, but return failure immediately not executing the other modules in the stack. Can be used to prevent a user from entering a password over an insecure connection.

sufficient
Return success immediately if no previous required modules in the stack have returned failure. Do not execute succeeding modules.

optional
The return code of this module is ignored, except if all other modules in the stack return an indeterminate result (PAM_IGNORE).

The module-path specifies the filename of the module to be run (relative to the directory /lib/security/, and the optional args are passed to the module - refer to the module’s documentation for supported options.
3.14 Required Pluggable Authentication Module (PAM) configuration

You MUST restrict authentication to services that are explicitly specified. The ‘other’ fallback MUST be disabled by specifying the `pam_deny.so` module for each module-type in the ‘other’ configuration. This ensures that access decisions within the PAM system are handled only by the service specific PAM configuration.

You MUST add the `pam_wheel.so` module to the ‘auth’ module-type configuration for the ‘su’ service to restrict use of `su(1)` to members of the ‘trusted’ group.

You MUST add the `pam_tally.so` module to the `auth` and `account` module-type configurations of `login`, `sshd`, and `vsftpd`. This ensures that accounts are disabled after several failed login attempts. The `pam_tally.so` module is used in the `auth` stack to increment a counter in the file `/var/log/lastlog`, and in the `account` stack to either deny login after too many failed attempts, or to reset the counter to zero after successful authentication. The evaluated configuration uses a lockout after five failed attempts, corresponding to the setting `deny=5`, you MAY decrease the number for stricter enforcement. Be aware that this can be used in denial-of-service attacks to lock out legitimate users. Please refer to section §4.7 ”Managing user accounts” of this guide for more information.

You MUST use the `pam_passwdqc.so` password quality checking module to ensure that users will not use easily-guessable passwords.

You MUST NOT modify other settings, specifically you MUST use the ‘md5’ and ‘use_cracklib’ options for the `pam_pwcheck.so` module.

The ‘remember=XX’ option must be added to the `/etc/security/pam_pwcheck.conf` file to force users to create new passwords and not re-use ones that they had previously, i.e. to prevent users from simply alternating between two passwords when asked to change it due to expiration. XX is any number between 7 and 400.

The system supports many other PAM modules apart from the ones shown here. In general, you MAY add PAM modules that add additional restrictions. You MUST NOT weaken the restrictions through configuration changes of the modules shown here or via additional modules. Also, you MUST NOT add PAM modules that provide additional privileges to users (such as the `pam_console.so` module).

Following are the pam configuration files:

3.14.1 /etc/pam.d/chage

This file configures the access control for the `chage` command. It allows the use of `chage` only after the user’s password has been entered or the calling user is `root`.

```
#%PAM-1.0
# root is allowed to use chage without authentication
auth sufficient pam_rootok.so
auth required pam_unix2.so
account required pam_permit.so
password required pam_deny.so
session required pam_deny.so
```

3.14.2 /etc/pam.d/chfn

This file configures the access control for the `chfn` command. It allows the use of `chfn` only after the user’s password has been entered or the calling user is `root`.

```
#%PAM-1.0
auth sufficient pam_rootok.so
auth required pam_unix2.so
```
account required pam_unix2.so
password required pam_deny.so
session required pam_deny.so

3.14.3 /etc/pam.d/chsh

This file configures the access control for the chsh command. It allows the use of chsh only after the user’s password has been entered or the calling user is ‘root’.

```bash
#%PAM-1.0
auth sufficient pam_rootok.so
auth required pam_unix2.so
account required pam_unix2.so
password required pam_deny.so
session required pam_deny.so
```

3.14.4 /etc/pam.d/login

This file configures the behavior of the login program. It allows root login only for terminals configured in /etc/securetty. If the file /etc/nologin is present, then only root can log in. The optional pam.env module MAY be used to set environment variables from /etc/security/pam.env.conf. The optional pam_mail module MAY be used to notify the user that there is new mail. The pam_tally module MUST be used to block the user after 5 failed login attempts. The optional pam_limits module MAY be used to enforce resource limits via /etc/security/limits.conf.

The pam_laus.so module is by default configured to be optional instead of required, which assumes that all terminals available for login are in physically secure locations and accessible only for authorized administrators. This permits administrators to log in on the console even if the audit subsystem is not available. If any serial terminals are attached and available for arbitrary users, you MUST specify the pam_laus.so module to be required to ensure the CAPP-compliant fail-secure operating mode that disables login if audit is not working. Please refer to section §4.8 "Using serial terminals" of this guide for more information.

```bash
#%PAM-1.0
# If serial terminals are in use, pam_laus.so MUST be changed to be
# 'required' for CAPP-complaint fail-secure auditing. The default
# 'optional' setting assumes that all terminals are in physically
# secure locations.
#
# auth required pam_tally.so onerr=fail no_magic_root
auth requisite pam_unix2.so
auth required pam_securetty.so
auth required pam_nologin.so
auth required pam_env.so  # optional
auth required pam_mail.so  # optional
account required pam_unix2.so
account required pam_tally.so deny=5 reset no_magic_root
password requisite pam_passwdqc.so ask_oldauthtok=update check_oldauthtok
password requisite pam_pwcheck.so use_first_pass use_authtok
password required pam_unix2.so use_first_pass use_authtok
session required pam_unix2.so
session required pam_limits.so  # optional
session optional pam_laus.so  # no lockout on failure
```
3.14.5 /etc/pam.d/other

This configuration applies for all PAM usage for which no explicit service is configured. It will log and block any attempts.

```bash
# %PAM-1.0
auth  required  pam_warn.so
auth  required  pam_deny.so
account required   pam_warn.so
account required   pam_deny.so
password required  pam_warn.so
password required  pam_deny.so
session required   pam_warn.so
session required   pam_deny.so
```

3.14.6 /etc/pam.d/pwd

This service configuration applies to password changes. Please see also /etc/security/pam_pwcheck.conf.

```bash
# %PAM-1.0
auth  required  pam_unix2.so
account required   pam_unix2.so
password requisite  pam_passwdqc.so  ask_oldauthtok=update  check_oldauthtok
password requisite  pam_pwcheck.so  use_first_pass  use_authhtok
password required   pam_unix2.so  use_first_pass  use_authhtok
session required   pam_unix2.so
```

3.14.7 /etc/pam.d/sshd

This file configures the PAM usage for SSH.

```bash
# %PAM-1.0
auth  required  pam_securetty.so  # deny root login in evaluated config
auth  required  pam_tally.so  onerr=fail  no_magic_root
auth  required  pam_unix2.so
auth  required  pam_nologin.so
auth  required  pam_env.so  # optional
account required   pam_unix2.so
account required   pam_nologin.so
account required   pam_tally.so  deny=5  reset  no_magic_root
password requisite  pam_passwdqc.so  ask_oldauthtok=update  check_oldauthtok
password requisite  pam_pwcheck.so  use_first_pass  use_authhtok
password required   pam_unix2.so  use_first_pass  use_authhtok
session required   pam_unix2.so
session required   pam_limits.so  # optional
session required   pam_laus.so  detach
```

3.14.8 /etc/pam.d/su

This file configures the behavior of the ’su’ command. Only users in the trusted group can use it to become ’root’, as configured with the pam_wheel module.
#%PAM-1.0
auth sufficient pam_rootok.so
auth required pam_wheel.so use_uid group=trusted
auth required pam_unix2.so
auth required pam_tally.so onerr=fail no_magic_root
account required pam_unix2.so
account required pam_tally.so no_magic_root deny=5 reset
password required pam_deny.so
session required pam_unix2.so

Forcing the root user to change the root password is not desired here, therefore the pam_unix2.so module is absent in the password branch and pam_deny.so is used instead.

3.14.9 /etc/pam.d/useradd

This file allows the root user to add accounts without entering the root password.

#%PAM-1.0
auth sufficient pam_rootok.so
auth required pam_deny.so
account required pam_permit.so
password required pam_permit.so
session required pam_deny.so

3.14.10 /etc/pam.d/vsftpd

This file configures the authentication for the FTP daemon. With the listfile module, users listed in /etc/ftpusers are denied FTP access to the system.

#%PAM-1.0
auth required pam_tally.so onerr=fail no_magic_root
auth required pam_listfile.so item=user sense=deny
 file=/etc/ftpusers onerr=fail
auth required pam_unix2.so
account required pam_unix2.so
account required pam_tally.so deny=5 reset no_magic_root
account required pam_laus.so detach
password required pam_deny.so
session required pam_unix2.so

Note that the FTP protocol has no provisions for changing passwords, therefore the pam_unix2.so module is absent in the password branch and pam_deny.so is used instead.

3.14.11 /etc/security/pam_pwcheck.conf

This file contains the default option for the pam_pwcheck module. This makes it easier to set a global policy. The md5 option enables long passwords (up to 127 characters, see also the limit in /etc/login.defs, and the use_cracklib option activates password quality checks against standard dictionary and permutation attacks. The remember option ensures that the user does not reuse passwords by keeping track of the specified number of previously used passwords in the file /etc/security/opasswd.

password: md5 use_cracklib remember=7
3.14.12 /etc/security/pam_unix2.conf

This file contains the default option for the pam_unix2 module. This makes it easier to set a global policy. The md5 option enables long passwords (up to 127 characters, see also the limit in /etc/login.defs. The trace option activates session tracing (start/stop) via syslog.

```
auth:
    account: md5
    password: md5
    session: trace
```

3.15 Setting up login controls

The system supports various options to control log ins in /etc/login.defs. The following table explains the options and values that MUST be set for the EAL4 evaluated configuration. Note that these are not the complete file contents, other settings not listed here MAY be changed.

```
# Required settings for the Common Criteria CAPP/EAL4+ evaluated configuration
# are indicated with a ‘# CC: ’ comment.

# Should login be allowed if we can’t cd to the home directory?
# Default is yes.
# # CC: MUST be ‘no’
# DEFAULT_HOME no

# Delay in seconds before being allowed another attempt
# after a login failure
# # CC: MUST be at least 3
# FAIL_DELAY 3

# Enable logging and display of /var/log/faillog login
# failure info.
# # CC: MUST be set to ‘no’
# CC: (this is handled by the PAM config (pam_tally) in /etc/pam.d/login)
# FAILLOG_ENAB no

# Enable logging and display of /var/log/lastlog login time info.
# # CC: MUST be ‘yes’
# LASTLOG_ENAB yes

# Enable display of unknown usernames when login failures
# are recorded.
# # CC: MUST be ‘no’
# LOG_UNKFAIL_ENAB no
```
Max number of login retries if password is bad
CC: MUST be <= 3
LOGIN_RETRIES 3

Max time in seconds for login
CC: MUST be <= 60
LOGIN_TIMEOUT 60

Require password before chfn/chsh can make any changes.
CC: MUST be 'yes'
CHFN_AUTH yes

Which fields may be changed by regular users using chfn - use
any combination of letters "frwh" (full name, room number, work
phone, home phone). If not defined, no changes are allowed.
For backward compatibility, "yes" = "rwh" and "no" = "frwh".
CC: MUST NOT contain 'f'
CC: MUST NOT be set to 'no'
CHFN_RESTRICT rwh

Password aging controls (used by useradd):
CC: The settings MAY be modified but the following conditions MUST be met:
CC: PASS_MAX_DAYS <= 60
CC: PASS_MIN_DAYS >= 1
CC: PASS_MIN_DAYS < PASS_MAX_DAYS
CC: PASS_WARN_AGE <= 7
CC: PASS_MIN_LEN >= 8
PASS_MAX_DAYS 60
PASS_MIN_DAYS 1
PASS_WARN_AGE 7
PASS_MIN_LEN 8

Umask which is used by useradd and newusers for creating
new home directories.
CC: MUST be '077'
UMASK 077

The UMASK entry sets the default permissions for new home directories to the most restrictive setting. Users MAY assign different permissions as described in section §6.4 "Access control for files and directories" of this guide. Note that the default umask for logged-in users is set in the /etc/profile file, not here.
3.15.1 Maintaining cracklib dictionaries

The dictionary files used by cracklib are stored in /usr/lib/:

 /usr/lib/cracklib_dict.hwm
 /usr/lib/cracklib_dict.pwd
 /usr/lib/cracklib_dict.pwi

To create custom dictionary files instead of the supplied ones, the command /usr/sbin/create-cracklib-dict MAY be used as follows:

 /usr/sbin/create-cracklib-dict wordlist wordlist ...

This will generate a new set of dictionary files from the supplied word lists. Suggested word lists are included in the source RPM package of cracklib. We RECOMMEND adding dictionaries for your local language and other languages likely to be known by your user community.

3.16 Configuring the boot loader

You MUST set up the server in a secure location where it is protected from unauthorized access. Even though that is sufficient to protect the boot process, it is RECOMMENDED to configure the following additional protection mechanisms:

- Ensure that the installed system boots exclusively from the disk partition containing SLES, and not from floppy disks, USB drives, CD-ROMs, network adapters, or other devices.
- Ensure that this setting cannot be modified, for example by using a BootProm/BIOS password to protect access to the configuration.

3.16.1 GRUB boot loader configuration

The GRUB boot loader is used on the x86 and Opteron platforms. It is highly configurable, and permits flexible modifications at boot time through a special-purpose command line interface. Please refer to the grub(8) man page or run info grub for more information.

- Use the password command in /boot/grub/menu.lst to prevent unauthorized use of the boot loader interface. Using md5 encoded passwords is RECOMMENDED, run the command grub-md5-crypt to generate the encoded version of a password.
- Protect all menu entries other than the default SLES boot with the lock option, so that the boot loader will prompt for a password when the user attempts to boot from other media (such as a floppy) or sets other non-default options for the boot process. To implement this, add a line containing just the keyword lock after the title entry in the /boot/grub/menu.lst file.
- Remove group and world read permissions from the grub configuration file if it contains a password by running the following command:

 chmod 600 /boot/grub/menu.lst

All changes to the configuration take effect automatically on the next boot, there is no need to re-run an activation program.
The following example of the /boot/grub/menu.lst configuration file shows RECOMMENDED settings:

```plaintext
color white/blue black/light-gray
default 0
timeout 8
password --md5 $1$O471l/$H/JW2MYeugX6Y1h3v.1Iz0
title linux
   kernel (hd0,1)/boot/vmlinuz root=/dev/sda2
   initrd (hd0,1)/boot/initrd
title failsafe
   lock
   kernel (hd0,1)/boot/vmlinuz.shipped root=/dev/sda2 ide=nodma apm=off \
      acpi=off vga=normal nosmp disableapic maxcpus=0 3
   initrd (hd0,1)/boot/initrd.shipped
```

Note that the configuration shown here might not be exactly the configuration used on the installed system, depending on the kernel options needed for the hardware.

3.16.2 Yaboot boot loader configuration

Yaboot is used on the pSeries machines, it is an OpenFirmware-based boot loader, and can be reconfigured at boot time from a specialized command line.

Yaboot and GRUB are very similar, both support MD5-encrypted passwords specified in the configuration file.

The configuration is contained in the /etc/lilo.conf file. Running the `lilo` tool creates the `yaboot.conf` file based on the information in the /etc/lilo.conf file.

You need to re-run the `lilo(8)` tool when you have modified the configuration file, this is however not necessary if you replace a kernel and keep all path names unchanged.

Please refer to the “SuSE Linux Enterprise Server Installation Guide” for iSeries and pSeries (pg. 37), the `yaboot.conf(5)` and `lilo(8)` manual pages, and the yaboot HOWTO for more information:

3.16.3 ZIPL boot loader configuration

The ZIPL boot loader is used on the zSeries mainframe when the system is set up using the VM virtualization layer. In this context, “booting” refers to the initial program load (IPL) done from the CP command prompt, which affects only a single specific Linux instance (a.k.a. “partition”, which refers to the running system and not the disk partition in this context).

Configuration of the VM system is beyond the scope of this document. You MUST ensure that the configuration settings and virtual devices used are only accessible to the authorized administrators. Do NOT use unencrypted 3270 sessions for console access on insecure networks.

ZIPL writes a boot record on the virtual disk (DASD) used by this Linux instance, this boot record then proceeds to load and run the Linux kernel itself. The `zipl` command must be re-run after any kernel or boot argument modifications. Please refer to the `zipl(8)` man page for more information.

The following example shows a typical `/etc/zipl.conf` file:
3.16.4 iSeries kernel slots

Similar to zSeries, the iSeries hosts use an initial program load (IPL) system to load and initialize a virtual Linux instance. There is no boot loader program on the Linux side, the host platform’s boot loader is configured through device drivers accessed via virtual files in the /proc/ file system.

The system supports multiple kernel slots. Usually, slot A contains the production kernel, and slot B is reserved for experimental kernels. The default boot image is selected via the /proc/iSeries/mf/side virtual file.

The kernel slot may contain either just a plain kernel (file name “vmlinux” or similar), or a combined kernel plus initial root disk (file name “vmlinitrd” or similar). Use the combined kernel+initrd if available to ensure that all necessary modules will be available for booting.

There are usually several different kernels and/or kernel+initrd files in /boot/, be careful to use the right file based on the version number information contained in the file name.

Here is a sample session to copy an image to kernel slot B, and activate it:

```
    dd if=/boot/vmlinitrd of=/proc/iSeries/mf/B/vmlinux bs=4k
    cat /proc/cmdline > /proc/iSeries/mf/B/cmdline
    echo "B" > /proc/iSeries/mf/side
```

For more information, please refer to:

and the ”SuSE Linux Enterprise Server Installation Guide” for iSeries and pSeries.

3.17 Reboot and initial network connection

– This concludes the sections covered by the automated configuration script –

After all the changes described in this chapter have been done, you MUST reboot the system to ensure that all unwanted tasks are stopped, and that the running kernel, modules and applications all correspond to the evaluated configuration.

Please make sure that the boot loader is configured correctly for your platform.

Remember to remove any CD-ROM from the drive and/or configure the system to boot from hard disk only.

The system will then match the evaluated configuration. The server MAY then be connected to a secure network as described above.

4 System operation

To ensure that the systems remains in a secure state, special care MUST be taken during system operation.
4 SYSTEM OPERATION

4.1 System startup, shutdown and crash recovery

Use the `shutdown(8)`, `halt(8)` or `reboot(8)` programs as needed to shut down or reboot the system.

When powered on (or on initial program load of the logical partition on a host system), the system will boot into the SLES operating system. If necessary (for example after a crash), a filesystem check will be performed automatically. In rare cases manual intervention is necessary, please refer to the `e2fsck(8)` and `debugfs(8)` documentation for details in this case.

In case a nonstandard boot process is needed (such as booting from floppy disk or CD-ROM to replace a defective hard drive), interaction with the boot loader and/or the host’s management system can be used to modify the boot procedure for recovery.

For example, on systems using the `grub` boot loader you can use the following commands to launch a shell directly from the kernel, bypassing the normal init/login mechanism:

```bash
# view the current grub configuration
grub> cat (hd0,1)/boot/grub/menu.lst

# manually enter the modified settings
grub> kernel (hd0,1)/boot/vmlinuz root=/dev/sda1 init=/bin/sh
grub> initrd (hd0,1)/boot/initrd
grub> boot
```

Please refer to the relevant documentation of the boot loader, as well as the SLES administrator guide, for more information.

4.2 Backup and restore

Whenever you make changes to security-critical files, you MAY need to be able to track the changes made and revert to previous versions, but this is not required for compliance with the evaluated configuration.

The `star(1)` archiver is RECOMMENDED for backups of complete directory contents, please refer to section §6.5 "Data import / export" of this guide. Regular backups of the following files and directories (on removable media such as tapes or CD-R, or on a separate host) are RECOMMENDED:

```
/etc/
/var/spool/cron/
/var/spool/atjobs/
```

Depending on your site’s audit requirements, also include the contents of `/var/log/` in the backup plan. In that case, the automatic daily log file rotation needs to be disabled or synchronized with the backup mechanism, refer to sections §5.2 “System logging and accounting” and §5.3 “Configuring the audit subsystem” of this guide for more information.

You MUST protect the backup media from unauthorized access, because the copied data does not have the access control mechanisms of the original file system. Among other critical data, it contains the secret keys used by the `SSH` and `stunnel` servers, as well as the `/etc/shadow` password database. Store the backup media at least as securely as the server itself.

A RECOMMENDED method to track changes is to use a version control system. RCS is easy to set up because it does not require setting up a central repository for the changes, and you can use shell scripting to automate the change tracking. RCS is not included in the evaluated configuration, see `rcsintro(1)` in the rcs RPM package for more information. Alternatively, you can create manually create backup copies of the files and/or copy them to other servers using `scp(1)`.
4.3 Gaining superuser access

System administration tasks require superuser privileges. Since directly logging on over the network as user 'root' is disabled, you MUST first authenticate using an unprivileged user ID, and then use the \texttt{su} command to switch identities. Note that you MUST NOT use the 'root' rights for anything other than those administrative tasks that require these privileges, all other tasks MUST be done using your normal (non-root) user ID.

You MUST use exactly the following \texttt{su(1)} command line to gain superuser access:

\begin{verbatim}
/bin/su -
\end{verbatim}

This ensures that the correct binary is executed irrespective of PATH settings or shell aliases, and that the root shell starts with a clean environment not contaminated with the starting user’s settings. This is necessary because the \texttt{.profile} shell configuration and other similar files are writable for the unprivileged ID, which would allow an attacker to easily elevate privileges to root if able to subvert these settings.

Administrators MUST NOT add any directory to the root user’s PATH that are writable for anyone other than 'root', and similarly MUST NOT use or execute any scripts, binaries or configuration files that are writable for anyone other than 'root', or where any containing directory is writable for a user other than 'root'.

4.4 Installation of additional software

Additional software packages MAY be installed as needed, provided that they do not conflict with the security requirements.

Any additional software added is not intended to be used with superuser privileges. The administrator MUST use only those programs that are part of the original evaluated configuration for administration tasks, except if the administrator has independently ensured that use of the additional software is not a security risk.

Administrators MAY add scripts to automate tasks as long as those only depend on and run programs that are part of the evaluated configuration.

The security requirements for additional software are:

- Kernel modules other than those provided as part of the evaluated configuration MUST NOT be installed or loaded. You MUST NOT load the \texttt{tux} kernel module (the in-kernel web server is not supported). You MUST NOT add support for non-ELF binary formats or foreign binary format emulation that circumvents system call auditing. You MUST NOT activate \texttt{knbsd} or export NFS file systems.
- Device special nodes MUST NOT be added to the system.
- SUID root or SGID root programs MUST NOT be added to the system. Programs which use the SUID or SGID bits to run with identities other than 'root' MAY be added.
- The content, permissions, and ownership of all existing filesystem objects (including directories and device nodes) that are part of the evaluated configuration MUST NOT be modified. Files and directories MAY be added to existing directories provided that this does not violate any other requirement.
- Programs automatically launched with 'root' privileges MUST NOT be added to the system. Exception: processes that immediately and permanently switch to a non privileged identity on launch are permitted, for example by using \texttt{su USERID -c LAUNCH_COMMAND} in the startup file, or alternatively by using the \texttt{setgroups(2), setgid(2) and setuid(2)} system calls in a binary. (\texttt{seteuid(2)} etc. are insufficient.)

Automatic launch mechanisms are:

- Entries in \texttt{/etc/inittab}
- Executable files or links in \texttt{/etc/init.d/} and its subdirectories
Entries in /etc/xinetd.conf
- Scheduled jobs using cron (including entries in /etc/cron* files) or at.

Examples of programs that usually do not conflict with these requirements and MAY be installed are compilers, interpreters, network services running with non-root rights, and similar programs. The requirements listed above MUST be verified in each specific case.

4.5 Scheduling processes using cron and at

The cron(8) program schedules programs for execution at regular intervals. Entries can be modified using the crontab(1) program - the file format is documented in the crontab(5) manual page.

You MUST follow the rules specified for installation of additional programs for all entries that will be executed by the 'root' user. Use non-root crontab entries in all cases where 'root' privileges are not absolutely necessary.

The at(1) and batch(1) programs execute a command line at a specific single point of time. The same rules apply as for jobs scheduled via cron(8). Use atq(1) and atrm(1) to manage the scheduled jobs.

Errors in the non interactive jobs executed by cron and at are reported in the system log files in /var/log/, and additionally via e-mail to the user who scheduled it.

Permission for users to schedule jobs with cron and at is controlled through the following allow and deny files:

/etc/at.allow
/etc/at.deny
/var/spool/cron/allow
/var/spool/cron/deny

The allow file has precedence if it exists, then only those users whose usernames are listed in it are permitted to use the service. If it does not exist, the deny file is used instead and all users who are not listed in that file can use the service. Note that the contents of these files are only relevant when the scheduling commands are executed, and changes have no effect on already scheduled commands.

In the SLES distribution, the allow files do not exist, and deny files are used to prevent system-internal IDs and/or guest users from using these services. By default, the evaluated configuration permits all non-system users to use cron and at.

It is RECOMMENDED to restrict the use of cron and at to human users and disallow system accounts from using these mechanisms. For example, the following commands add all system accounts other than root to the deny files:

awk -F: '{if ($3>0 && $3<100) print $1}' /etc/passwd >/etc/at.deny
chmod 600 /etc/at.deny
cp /etc/at.deny /var/spool/cron.deny

Administrators MAY schedule jobs that will be run with the privileges of a specified user by editing the file /etc/crontab with an appropriate username in the sixth field. Entries in /etc/crontab are not restricted by the contents of the allow and deny files.

You MAY create /etc/at.allow and/or /etc/cron.allow files to explicitly list users who are permitted to use these services. If you do create these files, they MUST be owned by the user 'root' and have file permissions 0600 (no access for group or others).
4.6 Mounting filesystems

If any filesystems need to be mounted in addition to those set up at installation time, appropriate mount options MUST be used to ensure that mounting the filesystem does not introduce capabilities that could violate the security policy.

The special-purpose proc, sysfs, and tmpfs filesystems are part of the evaluated configuration. These are virtual filesystems with no underlying physical storage, and represent data structures in kernel memory. Access to contents in these special filesystems is protected by the normal discretionary access control policy and additional permission checks.

Note that changing ownership or permissions of virtual files and directories is generally NOT supported for the proc and sysfs filesystems (corresponding to directories /proc/ and /sys/), and attempts to do so will be ignored or result in error messages.

A new file system can be integrated as part of the evaluated configuration, for example by installing an additional hard disk, under the following conditions:

- The device is protected against theft or manipulation in the same way as the server itself, for example by being installed inside the server.
- One or more new, empty, file systems in EXT3 format are created on it.
- The file systems are mounted using the acl option, for example with the following setting in the /etc/fstab file:

 /dev/sdc1 /home2 ext3 acl 1 2

 Existing files and directories MAY then be moved onto the new file systems.

- If a device containing a file system is ever removed from the system, the device MUST be stored within the secure server facility, or alternatively MUST be destroyed in a way that the data on it is reliably erased.

Alternatively, media MAY be accessed without integrating them into the evaluated configuration, for example CD-ROMs or DVDs.

CD/DVD devices MUST be accessed using the iso9660 filesystem type. Using the subfs automounter is NOT permitted in the evaluated configuration. See also section §3.1.1 “Filesystem configuration” of this guide.

The following mount options MUST be used if the filesystems contain data that is not part of the evaluated configuration:

 ro,nodev,nosuid

Adding the noexec mount option to avoid accidental execution of files or scripts on additional mounted filesystems is RECOMMENDED.

Note that these settings do not completely protect against malicious code and data, you MUST also verify that the data originates from a trustworthy source and does not compromise the server’s security. Specifically, be aware of the following issues:

- Even unprivileged programs and scripts can contain malicious code that uses the calling user’s rights in unintended ways, such as corrupting the user’s data, introducing trojan horses in the system, attacking other machines on the network, revealing confidential documents, or sending unsolicited commercial e-mail (“spam”).
• Data on the additional filesystem MUST have appropriate access rights to prevent disclosure to or modification by unauthorized users. Be aware that imported data may have been created using user names and permissions that do not match your system’s security policies.

• You MUST NOT write data on removable file systems such as floppy disks, since it cannot be adequately protected by the system’s access control mechanisms after being removed from the system. Please refer to section §4.2 “Backup and restore” of this guide for more information regarding non-filesystem-based backup.

Each new file system MUST be mounted on an empty directory that is not used for any other purpose. It is RECOMMENDED using subdirectories of /mnt for temporary disk and removable storage media mounts.

For example:

```bash
# mount /dev/cdrom /media/cdrom -t iso9660 -o ro,nodev,nosuid,noexec
```

You MAY also add an equivalent configuration to /etc/fstab, for example:

```bash
/dev/cdrom /media/cdrom iso9660 ro,noauto,nodev,nosuid,noexec 0 0
```

You MUST NOT include the user flag, ordinary users are not permitted to mount filesystems. This is also enforced by the deletion of the SUID bit on the mount command.

4.7 Managing user accounts

Use the useradd(8) command to create new user accounts, then use the passwd(1) command to assign an initial password for the user. Alternatively, if the user is present when the account is created, permit them to choose their own password. Refer to the manual pages for useradd(8) and passwd(1) for more information.

If you assign an initial password for a new user, you MUST transfer this initial password in a secure way to the user, ensuring that no third party gets the information. For example, you can tell the password to a user personally known to you. If this is not possible, you MAY send the password in written form in a sealed letter. This applies also when you set a new password for a user in case the user has forgotten the password or it has expired. You MUST advise the user that he MUST change this initial password when he first logs into the system and select his own password in accordance with the rules defined in section §6.3 “Password policy” of this guide.

You MUST NOT use the -p option to useradd(8), specifying a password in that way would bypass the password quality checking mechanism.

The temporary password set by the administrator MUST be changed by the user as soon as possible. Use the chage(8) command with the -d option to set the last password change date to a value where the user will be reminded to change the password. The RECOMMENDED value is based on the settings in /etc/login.defs and is equivalent to today’s date plus PASS_WARN_AGE minus PASS_MAX_DAYS.

Example:

```bash
useradd -m -c "John Doe" jdoe
passwd jdoe
chage -d $(date +%F -d "53 days ago") jdoe
```

The -m option to useradd(8) creates a home directory for the user based on a copy of the contents of the /etc/skel/ directory. Note that you MAY modify some default configuration settings for users, such as the default umask(2) setting or time zone, by editing the corresponding global configuration files:
If necessary, you MAY reset the user’s password to a known value using `passwd USER`, and entering the new password. You cannot recover the previously used password, since the hash function used is not reversible.

You MAY use the `usermod(8)` command to change a user’s properties. For example, if you want to add the user ‘jdoe’ to the `trusted` group, you could use the following:

```
# List the groups the user is currently a member of:
groups jdoe

# Add the additional group
usermod -G $(su jdoe -c groups | sed 's/ /,/g'),trusted jdoe
```

Users MAY be locked out (disabled) using `passwd -l USER`, and re-enabled using `passwd -u USER`.

The `pam_tally.so` PAM module enforces automatic lockout after excessive failed authentication attempts, as described in section §3.14 "Required Pluggable Authentication Module (PAM) configuration" of this guide. Use the program `pam_tally` to view and reset the counter if necessary, as documented in the file `/usr/share/doc/pam-*/txts/README.pam_tally`. Note that the `pam_tally` mechanism does not prevent password guessing attacks, it only prevents use of the account after such an attack has been detected. Therefore, you MUST assign a new password for the user before reactivating an account. For example:

```
# view the current counter value
pam_tally --user jdoe

# set new password, and reset the counter
passwd jdoe
pam_tally --user jdoe --reset
```

The `chage(1)` utility MAY be used to view and modify the expiry settings for user accounts. Unprivileged users are able to view but not modify their own expiry settings.

The `userdel(8)` utility removes the user account from the system, but does not remove files outside the home directory (and the mail spool file), or kill processes belonging to this user. Use `kill` (or reboot the system) and `find` to do so manually if necessary, for example:

```
# Which user to delete?
U=jdoe

# Lock user account, but don’t remove it yet
passwd -l $U

# Kill all user processes, repeat if needed (or reboot)
kill -9 'ps -la --User $U|awk '{print $4}''

# Recursively remove all files and directories belonging to user
# (Careful - this may delete files belonging to others if they
# are stored in a directory owned by this user.)
find / -depth \( ! -fstype ext3 -prune -false \) \ -o -user $U -exec rm -rf {} \;
```
4 SYSTEM OPERATION

Remove cron and at jobs

crontab -u $U -r

find /var/spool/atjobs -user $U -exec rm {} \;

Now delete the account

userdel $U

If you need to create additional groups or modify existing groups, use the `groupadd(8)`, `groupmod(8)` and `groupdel(8)` commands.

Group passwords are NOT supported in the evaluated configuration, and have been disabled by removing the SUID bit from the `newgrp(8)` program. You MUST NOT re-enable this feature and MUST NOT use `passwd(1)` with the -g switch or the `gpasswd(1)` command to set group passwords.

4.8 Using serial terminals

You MAY attach serial terminals to the system. They are activated by adding an entry in the file `/etc/inittab` for each serial terminal that causes `init(8)` to launch an `agetty(8)` process to monitor the serial line. `agetty` runs `login(1)` to handle user authentication and set up the user’s session.

If you use serial terminals and require the CAPP-compliant fail-safe audit mode, you MUST ensure that the file `/etc/pam.d/login` is configured to require the `pam_laus.so` module in the session stack. Please refer to section §3.14.4 “/etc/pam.d/login” of this guide for more information about the needed PAM configuration.

For example, adding the following line to `/etc/inittab` activates a VT102-compatible serial terminal on serial port `/dev/ttyS1`, communicating at 19200 bits/s:

```
S1:3:respawn:/sbin/agetty 19200 ttyS1 vt102
```

The first field MUST be an unique identifier for the entry (typically the last characters of the device name). Please refer to the `agetty(8)` and `inittab(5)` man pages for further information about the format of entries.

You MUST reinitialize the `init` daemon after any changes to `/etc/inittab` by running the following command:

```
init q
```

4.9 SYSV shared memory and IPC objects

The system supports SYSV-compatible shared memory, IPC objects, and message queues. If programs fail to release resources they have used (for example, due to a crash), the administrator MAY use the `ipcs(8)` utility to list information about them, and `ipcrm(8)` to force deletion of unneeded objects. Note that these resources are also released when the system is rebooted.

For additional information, please refer to the `msgctl(2)`, `msgget(2)`, `msgrcv(2)`, `msgsnd(2)`, `semctl(2)`, `semget(2)`, `semop(2)`, `shmat(2)`, `shmctl(2)`, `shmdt(2)`, `shmget(2)` and `ftok(3)` manual pages.

4.10 Configuring secure network connections with `stunnel`

4.10.1 Introduction

The `stunnel` program is a flexible and secure solution for setting up encrypted network connections, enabling the use of strong encryption even for applications that are not able to use encryption natively. `stunnel` uses the OpenSSL library for its encryption functions, and the corresponding `openssl(1)` command line tool for key management.

Stunnel has three main operating modes:
• Accept incoming SSL-encrypted TCP connections, and run a specific program to handle the request. This is similar to how `xinetd` launches programs, and any program compatible with `xinetd` can also be used for this purpose. It must read and write the communication data on the `stdin` and `stdout` file descriptors and stay in the foreground. `stunnel` also supports switching user and group IDs before launching the program.

• Open a SSL connection to a remote SSL-capable TCP server, and copy data to and from `stdin` and `stdout`.

• Bind a TCP port to accept incoming unencrypted connections, and forward data using SSL to a prespecified remote server.

The following diagram shows a sample usage scenario:

```
+-------------+ +-------------+
|               |               |
|               |               |
|               |               |
|               |               |
|               |               |
|               |               |
|               |               |
|               |               |
+---------------+ +---------------+
```

In this scenario, neither the client nor the server have administrator privileges, they are running as normal user processes. Also, the client and server do not support encryption directly.

`stunnel` makes a secure communication channel available for the client and server. On the client, `stunnel` is accepting connections on TCP port 82. The client connects to this port on the local machine using normal unencrypted TCP. `stunnel` accepts the connection, and opens a new TCP connection to the `stunnel` server running on the remote machine. The `stunnel` instances use cryptographic certificates to ensure that the data stream has not been intercepted or tampered with, and then the remote `stunnel` opens a third TCP connection to the server, which is again a local unencrypted connection.

Any data sent by either the client or server is accepted by the corresponding `stunnel` instance, encrypted, sent to the other `stunnel`, decrypted and finally forwarded to the receiving program. This way, no modifications are required to the client and server.

To set up a secure connection compliant with the evaluated configuration, you MUST start the `stunnel` server(s) with administrator rights, and you MUST use a TCP port in the administrator-reserved range 1-1023 to accept incoming connections. A corresponding client which connects to the server MAY be started by any user, not just administrators.

`stunnel` MAY also be used by non-administratorive users to receive encrypted connections on ports in the range 1024-65536. This is permitted, but it is outside of the scope of the evaluated configuration and not considered to be a trusted connection.

Any network servers and clients other than the trusted programs described in this guide (`stunnel`, `sshd`, `vsftpd`, `postfix` and `cupsd`) MUST be run using non-administrator normal user identities. Programs run from `stunnel` MUST be switched to a non-root user ID by using the `setuid` and `setgid` parameters in the `/etc/stunnel/*.conf` configuration files.
It is RECOMMENDED configuring any such servers to accept connections only from machine-local clients, either by binding only the localhost IP address 127.0.0.1, or by software filtering inside the application. This ensures that the only encrypted connections are possible over the network. Details on how to do this depend on the software being used and are beyond the scope of this guide.

Please refer to the stunnel(8) and openssl(1) man pages for more information.

4.10.2 Creating an externally signed certificate

It is strongly RECOMMENDED that you have your server’s certificate signed by an established Certificate Authority (CA), which acts as a trusted third party to vouch for the certificate’s authenticity for clients. Please refer to the openssl(1) and req(1) man pages for instructions on how to generate and use a certificate signing request.

Create the server’s private key and a certificate signing request (CSR) with the following commands:

```
touch /etc/stunnel/stunnel.pem
chmod 400 /etc/stunnel/stunnel.pem
openssl req -newkey rsa:1024 -nodes \
-keyout /etc/stunnel/stunnel.pem -out /etc/stunnel/stunnel.csr
```

You will be prompted for the information that will be contained in the certificate. Most important is the "Common Name", because the connecting clients will check if the hostname in the certificate matches the server they were trying to connect to. If they do not match, the connection will be refused, to prevent a ’man-in-the-middle’ attack.

Here is a sample interaction:

```
Generating a 1024 bit RSA private key
............++++++
........+++ ++
writing new private key to ’/etc/stunnel/stunnel.pem’
-----
You are about to be asked to enter information that will be incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.
-----
Country Name (2 letter code) [PL]:US
State or Province Name (full name) [Some-State]:TX
Locality Name (eg, city) []:Austin
Organization Name (eg, company) [Stunnel Developers Ltd]:Example Inc.
Organizational Unit Name (eg, section) []:
Common Name (FQDN of your server) []:www.example.com
Common Name (default) []:localhost
```

The file /etc/stunnel/stunnel.pem will contain both the certificate (public key) and also the secret key needed by the server. The secret key will be used by non-interactive server processes, and cannot be protected with a passphrase. You MUST protect the secret key from being read by unauthorized users, to ensure that you are protected against someone impersonating your server.
Next, send the generated CSR file `/etc/stunnel/stunnel.csr` (not the private key) to the CA along with whatever authenticating information they require to verify your identity and your server’s identity. The CA will then generate a signed certificate from the CSR, using a process analogous to `openssl req -x509 -in stunnel.csr -key CA-key.pem -out stunnel.cert`.

When you receive the signed certificate back from the CA, append it to the file `/etc/stunnel/stunnel.pem` containing the private key using the following command:

```bash
echo >> /etc/stunnel/stunnel.pem
cat stunnel.cert >> /etc/stunnel/stunnel.pem
```

Make sure that the resulting file contains no extra whitespace or other text in addition to the key and certificate, with one blank line separating the private key and certificate:

```
-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQCzF3ezbZFLjgv1YHNXnBnI8jmeQ5MnkvdNw9XkLnA2ONKQmvPQ
[...]
4tjzwTFxPKYvAW3DnXxRakAvafi1mbc+GTMoAiepXPfVqSpW2Qy5r/wa04d9phD5T
oUNbDUEuzuOPana7mmnvq3Mi+BuqwlQ/iU+GqrG6VGj
-----END RSA PRIVATE KEY-----

-----BEGIN CERTIFICATE-----
MIIC1jCCAj+gAwIBAgIBADANBgkqhkiG9w0BAQQFADBXMQswCQYDVQQGEwJQTDET
[...]
bIbYKL6Q1kE/vhGmRxcQzrkfu8sgy7JsDpoTAdUnmvssUY0bchqFo4Hhzkvs
U/wL2/8RFv5iw==
-----END CERTIFICATE-----
```

You MAY distribute the original signed certificate (`stunnel.cert` in this example) to clients, it does not contain any confidential information. *Never* distribute the file containing the private key, that is for use by the `stunnel` server only.

When using externally signed certificates, you MUST use the option `CApath` in `stunnel` client configuration files along with the setting `verify=2` or `verify=3` to enable the clients to verify the certificate.

4.10.3 Creating a self-signed certificate

Alternatively, you MAY use a self-signed certificate instead of one signed by an external CA. This saves some time and effort when first setting up the server, but each connecting client MUST manually verify the certificate’s validity. Experience shows that most users will not do the required checking and simply click "OK" for whatever warning dialogs that are shown, resulting in significantly reduced security. Self-signed certificates can be appropriate for controlled environments with a small number of users, but are not recommended for general production use.

Create a self-signed host certificate with the following commands:

```bash
# create secret key and self-signed certificate
openssl req -newkey rsa:1024 -nodes -keyout /etc/stunnel/stunnel.pem
-keyout /etc/stunnel/stunnel.pem
-new -x509 -sha1 -days 365
-out /etc/stunnel/stunnel.cert

# set appropriate file permissions
chmod 400 /etc/stunnel/*.pem
chmod 444 /etc/stunnel/*.cert
```
append copy of certificate to private key
echo >> /etc/stunnel/stunnel.pem
cat /etc/stunnel/stunnel.cert >> /etc/stunnel/stunnel.pem

The secret key contained in the /etc/stunnel/stunnel.pem file MUST be kept secret. The key files contain human-readable headers and footers along with the ASCII-encoded key, and the secret key is marked with the header "BEGIN RSA PRIVATE KEY".

You MAY distribute the public certificate stored in the /etc/stunnel/stunnel.cert file to clients, and is marked with the header "BEGIN CERTIFICATE". Make sure you do not accidentally distribute the secret key instead.

The client has no independent way to verify the validity of a self-signed certificate, each client MUST manually verify and confirm the validity of the certificate.

One method is to give a copy of the self-signed certificate to the client (using a secure transport mechanism, not e-mail), and import it into the client directly. The stunnel client uses the CAfile option for this purpose.

Alternatively, many client programs (not stunnel) can interactively import the certificate when connecting to the server. The client will display information about the server’s certificate including an MD5 key fingerprint. You MUST compare this fingerprint with the original fingerprint of the server’s certificate.

Run the following command on the server to display the original certificate’s fingerprint:

 openssl x509 -fingerprint -in /etc/stunnel/stunnel.cert

Most clients will store the certificate for future reference, and will not need to do this verification step on further invocations.

4.10.4 Activating the tunnel

In the evaluated configuration, you MUST use one of the following cipher suites as defined in the SSL v3 protocol:

<table>
<thead>
<tr>
<th># Cipher</th>
<th>Proto</th>
<th>Key</th>
<th>Authen-</th>
<th>Encryption</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td># exchg</td>
<td>tication</td>
<td>auth code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>-----</td>
<td>---------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>RC4-SHA</td>
<td>SSLv3</td>
<td>Kx=RSA Au=RSA</td>
<td>Enc=RC4(128)</td>
<td>Mac=SHA1</td>
<td></td>
</tr>
<tr>
<td>DES-CBC3-SHA</td>
<td>SSLv3</td>
<td>Kx=RSA Au=RSA</td>
<td>Enc=3DES(168)</td>
<td>Mac=SHA1</td>
<td></td>
</tr>
<tr>
<td>AES128-SHA</td>
<td>SSLv3</td>
<td>Kx=RSA Au=RSA</td>
<td>Enc=AES(128)</td>
<td>Mac=SHA1</td>
<td></td>
</tr>
<tr>
<td>AES256-SHA</td>
<td>SSLv3</td>
<td>Kx=RSA Au=RSA</td>
<td>Enc=AES(256)</td>
<td>Mac=SHA1</td>
<td></td>
</tr>
</tbody>
</table>

All other cipher suites and the other protocols supported by the OpenSSL library (TLSv1 and SSLv2) MUST be disabled.

You MUST specify the cipher list and protocol in all stunnel client and server configuration files:

```
ciphers = RC4-SHA:DES-CBC3-SHA:AES128-SHA:AES256-SHA
options = NO_TLSv1
options = NO_SSLv2
```

For a service or tunnel that will only be used temporarily, simply launch the stunnel program from the command line and specify an appropriate configuration file. The tunnel will be available for multiple clients, but will not be started automatically after a reboot. To shut down the tunnel, search for the command line in the ps ax process listing, and use the kill(1) command with the PID shown for the stunnel process.

The RECOMMENDED method is to use two separate configuration files, one for server definitions (incoming connections use SSL), and one for client definitions (outgoing connections use SSL). More complex configurations will
require additional configuration files containing individual service-specific settings. You MUST use the REQUIRED settings in all `stunnel` configuration files.

Use the following content for the file `/etc/stunnel/stunnel-server.conf`:

```
### /etc/stunnel/stunnel-server.conf
#
# The following settings are REQUIRED for CAPP compliance when used
# as a server, see ECG. File names MAY be changed as needed.
cert = /etc/stunnel/stunnel.pem
ciphers = RC4-SHA:DES-CBC3-SHA:AES128-SHA:AES256-SHA
options = NO_TLSv1
options = NO_SSLv2
#
# User and group ID MUST NOT be "root", but MAY be changed as needed.
setuid = nobody
setgid = nobody
#
# The following settings are RECOMMENDED
debug = 6
output = /var/log/stunnel-server.log
pid =
foreground = yes
#
# Individual service definitions follow
```

Use the following content for the file `/etc/stunnel/stunnel-client.conf`:

```
### /etc/stunnel/stunnel-client.conf
#
# The following settings are REQUIRED for CAPP compliance when used
# as a client, see ECG. File names MAY be changed as needed. You
# MAY use CApath instead of CAfile for externally signed certificates.
CAfile = /etc/stunnel/stunnel.cert
ciphers = RC4-SHA:DES-CBC3-SHA:AES128-SHA:AES256-SHA
options = NO_TLSv1
options = NO_SSLv2
client = yes
verify = 2
#
# User and group ID MUST NOT be "root", but MAY be changed as needed.
setuid = nobody
setgid = nobody
#
# The following settings are RECOMMENDED
debug = 6
output = /var/log/stunnel-client.log
pid =
foreground = yes
#
# Individual service definitions follow
```

The RECOMMENDED launch method for `stunnel(8)` is via the `init(8)` process. This requires adding new entries to `/etc/inittab`, the tunnels will be re-launched automatically whenever they are terminated, as well as after a reboot. The following are the RECOMMENDED `/etc/inittab` entries:
4.10.5 Using the tunnel

If the client program supports SSL encryption, it will be able to communicate with the stunnel service directly. You MUST verify and accept the server’s certificate if the client cannot recognize it as valid according to its known certification authorities.

If the client program does not support SSL directly, you can use stunnel as a client, or indirectly by setting up a proxy that allows the client to connect to an unencrypted local TCP port.

WARNING: The stunnel client does not verify the server’s certificate by default. You MUST specify either `verify = 2` or `verify = 3` in the client configuration file to switch on certificate verification.

You MAY also activate client certificate verification in the server’s configuration file, so that the server can verify the client’s identity as well.

As described in the previous section, you MUST specify

\[
\text{ciphers = RC4-SHA:DES-CBC3-SHA:AES128-SHA:AES256-SHA}
\]

\[
\text{options = NO_TLSv1}
\]

\[
\text{options = NO_SSLv2}
\]

in the configuration file to ensure that the cipher selection supported in the evaluated configuration will be used.

4.10.6 Example 1: Secure SMTP delivery

Normal SMTP e-mail delivery is not encrypted, but most mail clients support the enhanced SMTPS protocol that uses SSL encryption. The protocol itself is unchanged other than being encrypted.

stunnel can easily be used as a proxy to receive SMTPS connections on the standard port expected by clients (465/tcp), and then forward the data to the mail server listening on the SMTP port (25/tcp). The mail server configuration does not need to be modified to support encryption of incoming mail.

To implement SSL support for incoming mail, add the following service definition to the `/etc/stunnel/stunnel-server.conf` configuration:

```
[inbound_mail]
accept = 465
connect = 127.0.0.1:25
```

4.10.7 Example 2: Simple web server

The following shell script acts as a simple web server, reading requests from standard input and writing HTTP/HTML to standard output:

```bash
# Simple web server

#!/bin/bash

read -d '' request

# Process the request...

echo -e "HTTP/1.1 200 OK\nContent-Type: text/html\n\nHello, World!"
```
Add the following entry to the `/etc/stunnel/stunnel-server.conf` configuration to make this service available using the encrypted HTTPS protocol:

```javascript
[webserver_test]
accept = 443
exec = /usr/local/sbin/webserver_test
TIMEOUTclose = 0
```

Then, use a SSL-capable web browser to connect to port 443:

```
elinks https://localhost/
```

4.10.8 Example 3: system status view

This example shows how to combine `stunnel` client and server definitions to implement an encrypted tunnel for applications that do not themselves support encryption.

First, on the server machine, set up a `stunnel` server definition that accepts SSL connections on TCP port 444, and reports memory usage statistics for the server to connecting clients. Add the following service definition to the `/etc/stunnel/stunnel-server.conf` configuration:

```javascript
[free]
accept = 444
exec = /usr/bin/free
execargs = free
```

Then, on the client machine, add the following entry to the `/etc/stunnel/stunnel-client.conf` configuration, using the server’s IP address instead of "127.0.0.1":

```bash
cat > /usr/local/sbin/webserver_test <<--_EOF__
#!/bin/sh
# Simple web server, can be run via stunnel or xinetd
#
# read and discard client data
dd bs=65536 count=1 >/dev/null 2>&1
#
# Send HTTP header
echo -e "HTTP/1.0 200\r"
echo -e "Content-type: text/html\r"
echo -e "\r"
#
# Send HTML output
echo "<html>"
echo "<h1>Test Page</h1>"
date
echo "<h2>Memory usage</h2>"
echo "<pre>"
free
echo "</pre>"
echo "</html>"
__EOF__

chmod +x /usr/local/sbin/webserver_test
```
4 SYSTEM OPERATION

On the client machine, connect to the local stunnel proxy by running the following command as a normal user:

telnet localhost 81

This will open an unencrypted TCP connection to the client's local port 81, then stunnel builds an encrypted tunnel to the server's port 444 and transfers the decrypted data (in this case, the "free" output) back to the client. All unencrypted connections are machine local, and the data transferred over the network is encrypted.

4.11 The Abstract Machine Testing Utility (AMTU)

The security of the operating system depends on correctly functioning hardware. For example, the memory subsystem uses hardware support to ensure that the memory spaces used by different processes are protected from each other.

The Abstract Machine Testing Utility (AMTU) is distributed as an RPM, and was installed previously as described in section §3.3 "Add and remove packages" of this guide.

To run all supported tests, simply execute the amtu program:

 amtu

A successful run is indicated by the following output:

 Executing Memory Test...
 Memory Test SUCCESS!
 Executing Memory Separation Test...
 Memory Separation Test SUCCESS!
 Executing Network I/O Tests...
 Network I/O Controller Test SUCCESS!
 Executing I/O Controller - Disk Test...
 I/O Controller - Disk Test SUCCESS!
 Executing Supervisor Mode Instructions Test...
 Privileged Instruction Test SUCCESS!

The program will return a nonzero exit code on failure, which MAY be used to automatically detect failures of the tested systems and take appropriate action.

Please refer to the amtu(8) man page for more details.

4.12 Setting the system time and date

You MUST verify periodically that the system clock is sufficiently accurate, otherwise log and audit files will contain misleading information. When starting the system, the time and date are copied from the computer’s hardware clock to the kernel’s software clock, and written back to the hardware clock on system shutdown.

All internal dates and times used by the kernel, such as file modification stamps, use universal time (UTC), and do not depend on the current time zone settings. Userspace utilities usually adjust these values to the currently active time zone for display. Note that text log files will contain ASCII time and date representations in local time, often without explicitly specifying the time zone.

The date(1) command displays the current time and date, and can be used by administrators to set the software clock, using the argument mmddHHMMyyyy to specify the numeric month, day, hour, minute and year respectively. For example, the following command sets the clock to May 1st 2004, 1pm in the local time zone:
The `hwclock(8)` can query and modify the hardware clock on supported platforms, but is not available in virtual environments such as z/VM or LPAR. The typical use is to copy the current value of the software clock to the hardware clock. Note that the hardware clock MAY be running in either local time or universal time, as indicated by the `UTC` setting in the `/etc/sysconfig/clock` file. The following command sets the hardware clock to the current time using UTC:

```
hwclock -u -w
```

Use the command `tzselect(8)` to change the default time zone for the entire system. Note that users MAY individually configure a different time zone by setting the `TZ` environment variable appropriately in their shell profile, such as the `$HOME/.bashrc` file.

5 Monitoring, Logging & Audit

5.1 Reviewing the system configuration

It is RECOMMENDED that you review the system’s configuration at regular intervals to verify if it still agrees with the evaluated configuration. This primarily concerns those processes that may run with ‘root’ privileges.

The permissions of the device files `/dev/*` MUST NOT be modified.

In particular, review settings in the following files and directories to ensure that the contents and permissions have not been modified:

```
/etc/at.allow
/etc/at.deny
/etc/audit/*
/etc/cron.d/*
/etc/cron.daily/*
/etc/cron.hourly/*
/etc/cron.monthly/*
/etc/cron.weekly/*
/etc/crontab
/etc/ftpusers
/etc/group
/etc/gshadow
/etc/hosts
/etc/init.d/*
/etc/inetd.conf
/etc/login.defs
/etc/modules.conf
/etc/pam.d/*
/etc/passwd
/etc/security/opasswd
/etc/security/opasswd
/etc/security/pam_pwhandle.conf
/etc/security/pam_unix2.conf
/etc/shadow
/etc/sshd/ssh_config
/etc/sshd/sshd_config
```
Use the command `lastlog` to detect unusual patterns of logins.

Also verify the output of the following commands (run as 'root'):

```
atq
crontab -l
find / ( -perm -4000 -o -perm -2000 ) -ls
find / ( ( -type f -o -type d -o -type b ) -perm -0002 -ls

find /bin /boot /etc /lib /sbin /usr /
        ! -type l ( ! -uid 0 -o -perm +022 )
```

5.2 System logging and accounting

System log messages are stored in the `/var/log/` directory tree in plain text format, most are logged through the `syslogd(8)` and `klogd(8)` programs, which MAY be configured via the `/etc/syslog.conf` file.

The `logrotate(8)` utility, launched from `/etc/cron.daily/logrotate`, starts a fresh log file every week or when they reach a maximum size and automatically removes or archives old log files. YOU MAY change the configuration files `/etc/logrotate.conf` and `/etc/logrotate.d/*` as required.

In addition to the `syslog` messages, various other log files and status files are generated in `/var/log` by other programs:

<table>
<thead>
<tr>
<th>File</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>YaST2</td>
<td>Directory for YaST2 log files</td>
</tr>
<tr>
<td>audit.d</td>
<td>Directory for LAuS logs</td>
</tr>
<tr>
<td>boot.msg</td>
<td>Messages from system startup</td>
</tr>
<tr>
<td>lastlog</td>
<td>Last successful log in (see <code>lastlog(8)</code></td>
</tr>
<tr>
<td>vsftpd.log</td>
<td>Transaction log of the VSFTP daemon</td>
</tr>
<tr>
<td>localmessages</td>
<td>Written by syslog</td>
</tr>
<tr>
<td>mail</td>
<td>Written by syslog, contains messages from the MTA (postfix)</td>
</tr>
<tr>
<td>messages</td>
<td>Written by syslog, contains messages from su and ssh</td>
</tr>
<tr>
<td>news/</td>
<td>syslog news entries (not used in the evaluated configuration)</td>
</tr>
<tr>
<td>warn</td>
<td>Written by syslog</td>
</tr>
<tr>
<td>wtmp</td>
<td>Written by the PAM susbystem, see <code>who(1)</code></td>
</tr>
<tr>
<td>xinetd.log</td>
<td>Written by xinetd, logging all connections</td>
</tr>
</tbody>
</table>

Please see `syslog(3), syslog.conf(5)` and `syslogd(8)` man pages for details on syslog configuration.

The `ps(1)` command can be used to monitor the currently running processes. Using `ps aux` will show all currently running processes and threads.
5.3 Configuring the audit subsystem

The audit subsystem implements a central monitoring solution to keep track of security relevant events, such as changes and change attempts to security critical files.

This is accomplished through two separate mechanisms. All system calls are intercepted, and the kernel writes the parameters and return value to the audit log for those calls that are marked as security relevant in the filter configuration. In addition, some trusted programs contain audit-specific code to write audit trails of the actions they are requested to perform.

Please see `auditd(8)`, `laux(7)`, `auditd.conf(5)`, `aucat(8)` and `augrep(8)` for details.

5.3.1 Intended usage of the audit subsystem

The Controlled Access Protection Profile (CAPP) specifies the auditing capabilities that a compliant system must support. The evaluated configuration described here is based on these requirements.

WARNING: Some of the CAPP requirements may conflict with your specific requirements for the system. For example, a CAPP-compliant system MUST disable logins if the audit subsystem is not working. Please ensure that you are aware of the consequences if you enable auditing.

CAPP is designed for a multiuser system, with multiple unique users who maintain both shared and private resources. The auditing features are intended to support this mode of operation with a reliable trail of security-relevant operations. It is less useful for a pure application server with no interactive users.

Please be aware that the auditing subsystem will, when activated, cause some slowdown for applications on the server. The impact depends on what the application is doing and how the audit subsystem is configured. As a rule of thumb, applications that open a large number of separate files are most affected, and CPU-bound programs should not be measurably affected. You will need to balance the performance requirements against your security needs when deciding if and how you want to use auditing.

5.3.2 Selecting the events to be audited

You MAY make changes to the set of system calls and events that are to be audited. CAPP requires that the system has the capability to audit security relevant events, but it is up to you to choose how you want to use these capabilities. It is acceptable to turn off system call auditing completely even in an evaluated configuration, for example on a pure application server with no interactive users.

The configuration file `/etc/audit/filter.conf` by default contains a suggested setup for a typical multiuser system, all access to the security relevant files (as configured in `/etc/audit/filter.conf` and `/etc/audit/filesets.conf`) is audited, along with other security relevant events such as system reconfiguration.

You MAY selectively disable and enable auditing for specific events or users as required by setting up predicates and filters in the `filter.conf` file. The following excerpt from the default configuration is an example:

```plaintext
predicate is-non-root-uid = !eq(0);
filter not-root-user = is-non-root-uid(login-uid);

tag "Open_Denied"
syscall open = denied(result)
   && ((not-root-user || effectiveonroot )
      && is-sysdir(arg0));
```

Please refer to the `audit-filter(5)` man page for more details.
5.3.3 Reading and searching the audit records

Use the `aucat(8)` and `augrep(8)` tools to retrieve information from the audit logs. The information available for retrieval depends on the active filter configuration. If you modify the filter configuration, it is RECOMMENDED keeping a datestamped copy of the applicable configuration with the log files for future reference.

For example:

```
# view the last 100 audit records
aucat | tail -100

# view all successful PAM authentications
augrep -e TEXT -U AUTH_success

# all actions recorded for a specified login UID (this includes
# actions done by this user with a different effective UID,
# for example, via SUID programs or as part of a "su" session)
augrep -l kw

# file removals
augrep -e SYSCALL -S unlink
```

Of course, you can use other tools such as plain `grep(1)` or scripting languages such as `awk(1)`, `python(1)` or `perl(1)` to further analyze the text output generated by the low-level audit tools.

5.3.4 Starting and stopping the audit subsystem

The audit subsystem is only active when all of the following conditions are met:

- The `audit.o` kernel module must be loaded.
- The audit daemon `auditd` must be running.
- Processes are attached to the audit subsystem by explicitly launching them with the `aurun(8)` wrapper program; starting them from an interactive shell session that used the `pamlaus.so` PAM module when logging in; or when syscall auditing is enabled globally for all processes (setting `AUDIT_ATTACH_ALL=1` in `/etc/sysconfig/audit`).

If the audit daemon is terminated, no audit events are generated until it is restarted. To avoid lost audit records when you have modified the filter configuration, you MUST use the command `auditd -r` to re-load the filters.

WARNING: `auditd -r` will not reload `/etc/audit/audit.conf`, it only reloads the filter configuration file. To activate changes to this configuration file you MUST restart the audit daemon:

```
/etc/init.d/audit restart
```

You MUST NOT attempt to reload the configuration by sending `auditd` a HUP signal or by running `/etc/init.d/audit reload`, because that will not write the required audit record showing the reconfiguration. You MUST use one of the two restart methods described above.

If the audit module is unloaded with `rmmod`, all processes are detached permanently from the audit subsystem. They can only be re-attached when using the `AUDIT_ATTACH_ALL=1` option in `/etc/sysconfig/audit`.
5.3.5 Storage of audit records

The REQUIRED operating mode for the audit records is "bin mode" ("bin" as in bucket), using several preallocated files of constant size for the audit records. auditd will write data to the first file until it is filled, then switch to the next one re-using each one in turn in a round-robin fashion.

Each time a bin is filled, auditd will launch the configured notification program to process the file. The default configuration saves a copy of each filled file before re-using the storage. If the notification program exits with a failure status, for example, due to lack of disk space, auditd will then take the configured action, by default setting the message queue size to zero and thereby blocking all processes that try to write new records. These audited processes will sleep until auditd resumes processing (typically once disk space has been freed by the administrator), then they will be woken up by the kernel and proceed running normally.

You MAY instead configure round-robin reuse of the files without saving, to keep the disk space used by the audit logs constant. To do that, remove the "S /var/log/audit.d/save.%u" option in /etc/audit/audit.conf. In this configuration, you have access to a fixed amount of historical audit data, but any new events will cyclically overwrite old data. A user could exploit this mechanism by intentionally generating a large number of irrelevant entries to wipe out the previously generated records. The default configuration uses four files of only 20 MiB size each. You SHOULD increase these numbers in /etc/audit/audit.conf according to available disk space, your organizational requirements, and the system’s usage patterns to ensure that a sufficient amount of historic audit data will be saved.

5.3.6 Reliability of audit data

By default, the audit records are written using the normal Linux filesystem buffering, which means that information may be lost in a crash because it has not been written to the physical disk yet. Any applications that read the records while the system is running will always get the most current data out of the buffer cache, even if it has not yet been committed to disk, so this does not affect normal operation. If you want to ensure that auditd always forces a disk write for each record, you MAY set the "sync = yes;" option in /etc/audit/audit.conf, but be aware that this will result in significantly reduced performance and high strain on the disk.

The audit record files are not protected against a malicious administrator, and are not intended for an environment where the administrators are not trustworthy.

5.4 System configuration variables in /etc/sysconfig

The system uses various files in /etc/sysconfig to configure the system. Most files in this directory tree contain variable definitions in the form of shell variables that are either read by the rc scripts at system boot time or are evaluated by the SuSEconfig command and used as input to re-write other configuration files on the system.

The following is a brief overview of the security relevant files, including the specification of permitted changes.

In the evaluated configuration, no changes are permitted that would require running the SuSEconfig command to re-write other configuration files. You MAY run SuSEconfig, but it will have no effect on the evaluated configuration.

5.4.1 suseconfig

This file specifies global configuration variables. Most notably ENABLE_SUSECONFIG, which specifies whether SuSEconfig is allowed to modify other configuration files based on the variables in /etc/sysconfig.

Security relevant entries that MUST NOT be changed are:

ENABLE_SUSECONFIG="yes" # Is SuSEconfig allowed to modify configuration files?
MAIL_REPOTS_TO="root" # Where are system status mails sent to
CWD_IN_ROOT_PATH="no" # There MUST NOT be an entry for the current directory
CWD_IN_USER_PATH="no" # There MUST NOT be an entry for the current directory
5.4.2 security

Specifies the operation mode and the configuration file for the SUSE permission system. Read by the chkstat(8) program which is run automatically by yast2 after installation of new software. The following settings MUST NOT be changed:

```
CHECK_PERMISSIONS=set
PERMISSION_SECURITY="eal4"
```

5.4.3 cron

Configures standard system cron jobs, like deletion of old files in /tmp or update of the man databases. The settings are read by the shell scripts /etc/cron.daily/*. Security relevant variables are the following settings which MUST NOT be changed:

```
MAX_DAYS_IN_TMP=0          # How many days can files stay in /tmp
TMP_DIRS_TO_CLEAR="/tmp /var/tmp" # Which temporary directories are checked
OWNER_TO_KEEP_IN_TMP="root" # Ids for which files will not be erased
CLEAR_TMP_DIRS_AT_BOOTUP="no" # No cleaning of temp directories at boot
```

5.4.4 language

Sets up the default locale. This MUST NOT be changed, non-root users MAY override these default settings in their shell profiles.

5.4.5 backup

Configures the backup of the RPM database. MAY be changed.

5.4.6 boot

Configures the verbosity and interaction level of the boot process for debugging. Read by bootup scripts in /etc/init.d/. MAY be changed.

5.4.7 displaymanager

This would configure the display manager for a workstation. It is not used in the evaluated configuration.

5.4.8 kernel

Configures modules to be installed in the initrd for system boot. MUST NOT be changed.

5.4.9 clock

Configures time zone and system clock, read during system boot. MAY be changed.
5.4.10 **proxy**

Configures global variables for the use of proxies. Not used in the evaluated configuration.

5.4.11 **windowmanager**

Would select the window manager on a workstation. Not used in the evaluated configuration.

5.4.12 **sysctl**

Configures some system variables for the boot process. The following are security relevant and MUST NOT be changed:

- `IP_DYNIP=no` # The system only has a static address
- `IP_TCP_SYNCOOKIES=yes` # Syn Flood protection
- `IP_FORWARD=no` # Has to be set to yes if the system acts as a router.
- `ENABLE_SYSRQ=no` # System request key MUST be disabled.

5.4.13 **java**

Would configure the Java run time environment if installed. Not used in the evaluated configuration.

5.4.14 **mail**

Configures the MTA.

Security relevant variables are:

- `SMTPD_LISTEN_REMOTE="no"` # MAY be set to yes to accept remote connections.

5.4.15 **hardware**

Configures hardware parameters (DMA), read during system boot. MAY be changed.

5.4.16 **printer**

Sets the default printer. MUST NOT be changed, but non-root users may override the setting in their shell profiles.

5.4.17 **news**

Usenet news / NNTP settings. Not used in the evaluated configuration.

5.4.18 **console**

Sets up the console configuration (font, code page, frame buffer). MUST NOT be changed.
5.4.19 keyboard
Sets up the console keyboard (repeat rate, layout, number of virtual consoles). MAY be changed.

5.4.20 mouse
Sets up the mouse type. Not used in the evaluated configuration.

5.4.21 lvm
Sets up LVM. MAY be changed.

5.4.22 network
This directory contains the networking configuration and scripts for the interfaces and routes. MAY be modified as needed, but IP addresses MUST be static (no DHCP).

5.4.23 syslog
Configures the syslog daemon. MAY be changed.

5.4.24 SuSEfirewall2
Configures the firewall. Not used in the evaluated configuration.

5.4.25 hotplug
Configures dynamically attached devices (USB, Firewire). OPTIONAL in the evaluated configuration.

5.4.26 ssh
Configures command line options for the SSH daemon. MUST NOT be changed.

5.4.27 postfix
Configures the basic MTA setup. MUST NOT be changed.

5.4.28 bootloader
Configures the type of bootloader to use and where to store the boot record. MUST NOT be changed.

5.4.29 audit
Configures tunable parameters for the kernel part of the audit subsystem. MUST NOT be changed.
6 Security guidelines for users

6.1 Online Documentation

The system provides a large amount of online documentation, usually in text format. Use the man program to read entries in the online manual, for example:

```
man ls
man man
```
to read information about the `ls` and `man` commands respectively. You can search for keywords in the online manual with the `apropos`(1) utility, for example:

```
apropos password
```

When this guide refers to manual pages, it uses the syntax `ENTRY(SECTION)`, for example `ls(1)`. Usually you do not need to provide the section number, but if there are several entries in different sections, you can use the optional `-S` switch and pick a specific one.

Some programs provide additional information GNU `texinfo` format, use the `info` program to read it, for example:

```
info diff
```

Additional information, sorted by software package, can be found in the `/usr/share/doc/*` directories. Use the `less`(1) pager to read it, for example:

```
less /usr/share/doc/packages/bash/FAQ
```

Many programs also support a `--help`, `--?` or `--h` switch you can use to get a usage summary of supported command-line parameters.

A collection of How-To documents in HTML format can be found under `/usr/share/doc/howto/en/html` if the optional `howtoenh` package is installed.

Please see `/usr/share/doc/howto/en/html/Security-HOWTO` for security information. The HTML files can be read with the `w3m` browser.

The SLES documentation is also installed in electronic form. `/usr/share/doc/packages/sles-inst-*` contains the installation guide in PDF format, and `/usr/share/doc/packages/sles-admin-*` the administration manual.

Note that this Configuration Guide has precedence over other documents in case of conflicting recommendations.

6.2 Authentication

You MUST authenticate (prove your identity) before being permitted to use the system. When the administrator created your user account, he or she will have assigned a user name and default password, and provided that information for you along with instructions how to access the system.

Logging in to the system will usually be done using the Secure Shell (SSH) protocol, alternatively a serial terminal may be available. Use the `ssh` command to connect to the system unless instructed otherwise by the administrator, for example:

```
ssh jdoe@172.16.0.1
```
The `ssh(1)` manual page provides more information on available options. If you need to transfer files between systems, use the `scp(1)` or `sftp(1)` tools.

If this is the first time you are connecting to the target system, you will be prompted if you want to accept the host key. If the administrator has provided a key fingerprint for comparison, verify that they match, otherwise type `yes` to continue. You MUST immediately change your initially assigned password with the `passwd(1)` utility.

You MUST NOT under any circumstances attempt to log in from an insecure device, such as a public terminal or a computer belonging to a friend. Even if the person owning the computer is trustworthy, the computer may not be due to having been infected with malicious code. Always remember that the device you are typing your password into has the ability to save and re-use your authentication information, so you are in effect giving the computer you are using the right to do any and all actions in your name. Insecure handling of authentication information is the leading cause for exploits of otherwise secure systems, and SSH can only protect the information during transit, and offers no protection at all against an insecure end point.

When you log out from the system and leave the device you have used for access (such as a terminal or a workstation with terminal emulation), you MUST ensure that you have not left information on the screen or within an internal buffer that should not be accessible to another user. You should be aware that some terminals also store information not displayed on the terminal (such as passwords, or the contents of a scrollback buffer). Nevertheless this information may be extractable by the next user unless the terminal buffer has been cleared. Safe options include completely shutting down the client software used for access, powering down a hardware terminal, or clearing the scrollback buffer by switching among virtual terminals in addition to clearing the visible screen area.

If you ever forget your password, contact your administrator who will be able to assign a new password.

You MAY use the `chsh(1)` and `chfn(1)` programs to update your login shell and personal information if necessary. Not all settings can be changed this way, contact your administrator if you need to change settings that require additional privileges.

6.3 Password policy

All users, including the administrators, MUST ensure that their authentication passwords are strong (hard to guess) and handled with appropriate security precautions. The password policy described here is designed to satisfy the requirements of the evaluated configuration. If your organization already has a password policy defined, your administrator MAY refer you to that policy if it is equivalently strong.

You MUST change the initial password set by the administrator when you first log into the system. You MUST select your own password in accordance with the rules defined here. You MUST also change the password if the administrator has set a new password, for example if you have forgotten your password and requested the administrator to reset the password.

Use the `passwd(1)` program to change passwords. It will first prompt you for your old password to confirm your identity, then for the new password. You will be prompted to enter the new password twice, to catch mistyped passwords.

The `passwd(1)` program will automatically perform some checks on your new password to help ensure that it is not easily guessable, but you MUST nevertheless follow the requirements in this chapter.

Note that the administrators MUST also ensure that their own passwords comply with this password policy, even in cases where the automatic checking is not being done, such as when first installing the system.

- Your password MUST be a minimum of 8 characters in length. More than 8 characters MAY be used (it is RECOMMENDED to use more than 8, best is to use passphrases), and all characters are significant.
- Use at least one character each from the following sets for passwords:

 Lowercase letters: abcdefghijklmnopqrstuvwxyz
 Uppercase letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
You MUST NOT base the password on a dictionary word, your real name, login name, or other personal details (such as dates, names of relatives or pets), or names of real people or fictional characters.

Instead of a password, you MAY use a passphrase consisting of multiple unrelated words (at least three) joined with random punctuation characters. Such a passphrase MUST have a length of at least 16 characters.

You MUST NOT use a simple alphabetic string, palindrome or combinations of adjacent keyboard keys.

When you choose a new password, it MUST NOT be a simple variation or permutation of a previously used one.

You MUST NOT write the password on paper or store it on electronic devices in unprotected form. Storage in a secure location (such as an envelope in a safety deposit box, or encrypted storage on an electronic device) MAY be acceptable, contact your administrator first to ensure that the protection is strong enough to make password recovery infeasible for the types of attackers the system is intended to protect against.

The password is for you and you only. A password is like a toothbrush - you do not want to share it with anybody, even your best friend. You MUST NOT disclose your password to anybody else, or permit anybody else to use the system using your identity.

Note that administrators will never ask you for your password, since they do not need it even if they are required to modify settings affecting your user account.

You MUST NOT use the same password for access to any systems under external administration, including Internet sites. You MAY however use the same password for accounts on multiple machines within one administrative unit, as long as they are all of an equivalent security level and under the control of the same administrators.

You MUST INFORM the administrator and select a new password if you have reason to believe that your password was accidentally disclosed to a third party.

If the system notifies you that your password will expire soon or has expired, choose a new one as instructed. Contact your administrator in case of difficulty.

A RECOMMENDED method of generating passwords that fits these criteria while still being easy to memorize is to base it on letters of words in a sentence (NOT a famous quotation), including capitalization and punctuation and one or two variations. Example:

"Ask not for whom the bell tolls."
=> An4wtbt.

"Password 'P'9tw;citd' too weak; contained in this document"
=> P'9tw;citd

6.4 Access control for files and directories

Linux is a multiuser operating system. You can control which other users will be able to read or modify your files by setting the Unix permission bits and user/group IDs, or (if more precise control is needed) by using POSIX-style access control lists (ACLs).

Note that the administrators ('root') are able to override these permissions and access all files on the system. Use of encryption is RECOMMENDED for additional protection of sensitive data.
The 'umask' setting controls the permissions of newly created files and directories and specifies the access bits that will be removed from new objects. Ensure that the setting is appropriate, and never grant write access to others by default. The umask MUST include at least the 002 bit (no write access for others), and the RECOMMENDED setting is 027 (read-only and execute access for the group, no access at all for others).

Do not set up world-writable areas in the filesystem - if you want to share files in a controlled manner with a fixed group of other users (such as a project group), please contact your administrator and request the creation of a user group for that purpose.

Always remember that you are responsible for the security of the data you create and use. Choose permissions that match the protection goals appropriate for the content, and that correspond to your organization’s security policy. Access to confidential data MUST be on a need-to-know basis, do not make data world-readable unless the information is intended to be public.

Whenever you start a program or script, it will execute with your access rights. This implies that a malicious program would be able to read and modify all files that you have access to. Never execute any code that you have received from untrustworthy sources, and do not run commands that you do not understand. Be aware that manipulations to the environment a program is run in can also cause security flaws, such as leaking sensitive information. Do not use the shell variables LD_LIBRARY_PATH or LD_PRELOAD that modify the shared library configuration used by dynamically linked programs.

Programs can be configured to run with the access rights of the program file’s owner and/or group instead of the rights of the calling user. This is the SUID/SGID mechanism, which utilities such as passwd(1) use to be able to access security-critical files. You could also create your own SUID/SGID programs via chmod(1), but DO NOT do that unless you fully understand the security implications - you would be giving away your access privileges to whoever launches the SUID program. Please refer to the "Secure Programming HOWTO" in the unlikely case that you need to create such a program, there you will find explanations of the many aspects that must be considered, such as the risk of unintended shell escapes, buffer overflows, resource exhaustion attacks and many other factors. Note that SUID root programs MUST NOT be added to the evaluated configuration, the only permitted use of the SUID bit is for setting non-root user IDs.

Please refer to the chmod(1), umask(2), chown(1), chgrp(1), acl(5), getfacl(1), and setfacl(1) manual pages for information, or any of the many available books covering Linux security (cf. Appendix 'Literature'), or ask your system administrator for advice.

6.5 Data import / export

The system comes with various tools to archive data (tar, star, cpio). If ACLs are used, then only star MUST be used to handle the files and directories as the other commands do not support ACLs. The options -H=exustar -acl must be used with star.

Please see the star(1) man page for more information.

7 Appendix

7.1 Online Documentation

If there are conflicting recommendations in this guide and in one of the sources listed here, the Configuration Guide has precedence concerning the evaluated configuration.

7.2 Literature

7.3 The file /etc/audit/audit.conf

 # kernel interface
 device-file = "/dev/audit";

 # filter config
 filter-config = "/etc/audit/filter.conf";

 # Standard output method is bin mode.
 #
 output {
 mode = bin;
 num-files = 4;
 file-size = 20M;
 file-name = "/var/log/audit.d/bin";
 notify = "/usr/sbin/audbin -S /var/log/audit.d/save.%u -C";

 # The following symlink is created whenever we switch to
 # a new bin.
 current = "/var/log/audit";

 sync = yes;
 error {
 action {
 type = suspend;
 };
 };
 };

Alternatively, write to /var/log/audit in normal append mode
output {
mode = append;
file-name = "/var/log/audit";
sync = yes;
};

Alternative output
output {
mode = stream;
command = "/usr/local/sbin/send_to_syslog"
};

Disk usage thresholds.
These thresholds are checked at regular intervals when append mode is used.
(bin mode doesn’t require these checks as the bin files are preallocated).
threshold disk-space-low {
 space-left = 10M;
 action {
 type = syslog;
 facility = security;
 priority = warning;
 };
 action {
 type = notify;
 command = "/usr/local/bin/page-admin";
 };
 action {
 type = audit;
 event = AUDIT_disklow;
 };
};

threshold disk-full {
 space-left = 20K;
 action {
 type = syslog;
 facility = security;
 priority = crit;
 };
 action {
 type = audit;
 event = AUDIT_diskfull;
 };
};

7.4 The file /etc/audit/filter.conf
#

This is a sample filter.conf file.
Please take a look at filesets.conf first if you
wish to customize what system calls will be logged.
#
The syntax of this file is described in filter.conf(5).
#
#
Various primitive predicates
predicate is-null = eq(0);
predicate is-negative = lt(0);
predicate is-system-uid = lt(100);
predicate is-lower-1024 = lt(-1024);

Predicate to check open(2) mode: true iff
(mode & O_ACCMODE) == O_RDONLY
predicate is-rdonly = mask(O_ACCMODE, O_RDONLY);

Predicates for testing file type, valid when applied
to a file type argument
predicate __isreg = mask(S_IFMT, S_IFREG);
predicate __isdirm = mask(S_IFMT, S_IFDIR);
predicate __ischr = mask(S_IFMT, S_IFCHR);
predicate __isblk = mask(S_IFMT, S_IFBLK);
predicate __issock = mask(S_IFMT, S_IFSOCK);
predicate __islknk = mask(S_IFMT, S_IFLNK);
predicate s_isreg = __isreg(file-mode);
predicate s_isdir = __isdirm(file-mode);
predicate s_ischr = __ischr(file-mode);
predicate s_isblk = __isblk(file-mode);
predicate s_issock = __issock(file-mode);
predicate s_islnk = __islknk(file-mode);
predicate is-tempdir = mask(01777, 01777);
predicate is-world-writable = mask(0666, 0666);

Predicates dealing with process exit code
predicate if-crash-signal =

 !mask(__WSIGMASK, 0)
 & (mask(__WSIGMASK, __WSIGILL) ||
 mask(__WSIGMASK, __WSIGABRT) ||
 mask(__WSIGMASK, __WSIGSEGV) ||
 mask(__WSIGMASK, __WSIGSTKFLT));

Predicates for audit-tags
predicate is-o-creat = mask(O_CREAT, O_CREAT);
predicate is-ipc-remove = eq(IPC_RMID);
predicate is-ipc-setperms = eq(IPC_SET);
predicate is-ipc-creat = mask(IPC_CREATE, IPC_CREATE);
predicate is-auditdevice = prefix("/dev/audit");
predicate is-cmd-set-auditid = eq(AUCSETAUDITID);
predicate is-cmd-set-loginid = eq(AUCLOGIN);

Misc filters
filter is-root = is-null(uid);
filter is-setuid = is-null(dumpable);
filter syscall-failed = is-negative(result);
filter syscall-addr-succeed = is-lower-1024(result);
predicate is-af-packet = eq(AF_PACKET);
predicate is-af-netlink = eq(AF_NETLINK);
predicate is-sock-raw = eq(SOCK_RAW);

Include filesets.
include "filesets.conf";

"Secret" files should not be read by everyone -
we also log read access to these files
predicate is-secret = prefix(@secret-files);

All regular files owned by a system uid are deemed sensitive
predicate is-system-file = is-system-uid(file-uid)
 && !prefix("/var")
 && !is-world-writable(file-mode);

Define ioctls we track
set sysconf-ioctls = {
 SIOCADDLPCI,
 SIOCADDMULTI,
 SIOCADDRT,
 SIOCBOINDCHANGEACTIVE,
 SIOCBOINDSENGLAVE,
 SIOCBOINDRELEASE,
 SIOCBOINDSETHWADDR,
 SIOCDAOF,
 SIOCDELLDLCI,
 SIOCDELMULTI,
 SIOCDELRT,
 SIOCDEFADDR,
 SIOCDRARP,
 SIOCDTOOL,
 SIOCGIFBR,
 SIOCSIFBR,
 SIOCSIFADDR,
SIOCSIFBRADDR,
SIOCSIFDSTADDR,
SIOCSIFENCAP,
SIOCSIFFLAGS,
SIOCSIFHWADDR,
SIOCSIFHWBROADCAST,
SIOCSIFLINK,
SIOCSIFMAP,
SIOCSIFMEM,
SIOCSIFMETRIC,
SIOCSIFMTU,
SIOCSIFNAME,
SIOCSIFNETMASK,
SIOCSIFPFFLAGS,
SIOCSIFSLAVE,
SIOCSIFTXQLEN,
SIOCSMIIREG

};
predicate is-sysconf-ioctl = eq(@sysconf-ioctlsls);

#
System calls on file names
#
set file-ops = {
 "mkdir", "rmdir", "unlink",
 "chmod",
 "chown", "lchown",
 "chown32", "lchown32",
};

#
General system related ops
#
set system-ops = {
 swapon, swapoff,
 create_module, init_module, delete_module,
 sethostname, setdomainname,
};

set priv-ops = {
 "setuid",
 "setuid32",
 "seteuid",
 "seteuid32",
 "setreuid",
 "setreuid32",
 "setresuid",
 "setresuid32",
 "setgid",
 "setgid32",
 "setegid",
 "setegid32",
 "setregid",
 "setregid32",
 "setgid",
}
"setregid32",
"setresgid",
"setresgid32",
"setgroups",
"setgroups32",
"capset",

};

#
Audit-Tags (only syscall related tags are handled here)
#

define sets of syscalls related to audit-tags

System calls for changing file modes
set mode-ops = {
 "chmod",
 "fchmod",
};

System calls for changing file owner
set owner-ops = {
 "chown", "lchown",
 "chown32", "lchown32",
 "fchown",
};

System calls doing file link operations
set link-ops = {
 "link", "symlink",
};

System calls for creating device files
set mknod-ops = {
 "mknod",
};

System calls for opening a file
set open-ops = {
 "open",
};

File renaming
set rename-ops = {
 "rename",
};

File truncation
set truncate-ops = {
 "truncate", "truncate64",
 "ftruncate", "ftruncate64",
};
Unlink files
set unlink-ops = {
 "unlink",
};

Deletion of directories
set rmdir-ops = {
 "rmdir",
};

Mounting of filesystems
set mount-ops = {
 "mount",
};

Unmounting of filesystems
set umount-ops = {
 "umount",
 "umount2"
};

Changing user (-role)
set userchange-ops = {
 "setuid",
 "setuid32",
 "seteuid",
 "seteuid32",
 "setreuid",
 "setreuid32",
 "setresuid",
 "setresuid32",
};

Execute another program
set execute-ops = {
 "execve",
};

Set real user-ID
set realuid-ops = {
 "setuid",
 "setuid32",
};

Set user-IDS in general
set setuserids-ops = {
 "setuid",
 "setuid32",
 "seteuid",
 "seteuid32",
 "setreuid",
 "setreuid32",
 "setresuid",
 "setresuid32",
}
"setresuid",
"setresuid32",
);

Set real group-ID
set realgid-ops = {
 "setgid",
 "setgid32",
 "setgroups",
 "setgroups32",
}
);

Set group-IDs in general
set setgroups-ops = {
 "setgid",
 "setgid32",
 "setegid",
 "setegid32",
 "setregid",
 "setregid32",
 "setresgid",
 "setresgid32",
 "setgroups",
 "setgroups32",
}
);

Set other kind of privileges (capabilities)
set privilege-ops = {
 "capset",
}
);

Change system-time
set timechange-ops = {
 "adjtimex",
 "stime",
 "settimeofday",
}
);

Bring sets and tags in conjunction

tag "FILE_mode"
syscall @mode-ops = always;

tag "FILE_owner"
syscall @owner-ops = always;

tag "FILE_link"
syscall @link-ops = always;

tag "FILE_mknod"
syscall @mknod-ops = always;
tag "FILE_create"
syscall open = is-o-creat(arg1);
tag "FILE_create"
syscall creat = always;

#tag "FILE_open"
#syscall @open-ops = always;

tag "FILE_open"
syscall @open-ops = (is-system-file(arg0) && !(is-rdonly(arg1)))
 || is-secret(arg0);

tag "FILE_rename"
syscall @rename-ops = always;

tag "FILE_truncate"
syscall @truncate-ops = always;

tag "FILE_unlink"
syscall @unlink-ops = always;

tag "FS_rmdir"
syscall @rmdir-ops = always;

tag "FS_mount"
syscall @mount-ops = always;

tag "FS_umount"
syscall @umount-ops = always;

I think owner changing doesn't make much sense

tag "MSG_owner"
syscall msgctl = is-ipc-setperms(arg1);

tag "MSG_mode"
syscall msgctl = is-ipc-setperms(arg1);

tag "MSG_delete"
syscall msgctl = is-ipc-remove(arg1);

tag "MSG_create"
syscall msgget = always;

tag "SEM_owner"
syscall semctl = is-ipc-setperms(arg2);

tag "SEM_mode"
syscall semctl = is-ipc-setperms(arg2);

tag "SEM_delete"
syscall semctl = is-ipc-remove(arg2);
tag "SEM_create"
systemcall semget = always;

tag "SHM_owner"
systemcall shmctl = is-ipc-setperms(arg1);

tag "SHM_mode"
systemcall shmctl = is-ipc-setperms(arg1);

tag "SHM_delete"
systemcall shmctl = is-ipc-remove(arg1);

tag "SHM_create"
systemcall shmget = always;

tag "PRIV_userchange"
systemcall @userchange-ops = always;

tag "PROC_execute"
systemcall @execute-ops = always;

tag "PROC_realuid"
systemcall @realuid-ops = always;

tag "PROC_auditid"
systemcall ioctl = (is-auditdevice(arg0) && is-cmd-set-auditid(arg1));

tag "PROC_loginid"
systemcall ioctl = (is-auditdevice(arg0) && is-cmd-set-loginid(arg1));

tag "PROC_setuserids"
systemcall @setuserids-ops = always;

tag "PROC_realgid"
systemcall @realgid-ops = always;

tag "PROC_setgroups"
systemcall @setgroups-ops = always;

tag "PROC_privilege"
systemcall @privilege-ops = always;

tag "SYS_timechange"
systemcall @timechange-ops = always;

not required by CAPP
systemcall ipc = always;

systemcall socket = is-af-packet(arg0) || is-sock-raw(arg1);
systemcall ioctl = is-sysconf ioctl(arg1);
Special filters for process/termination
event process-exit = if-crash-signal(exitcode);

Events we want to log unconditionally:
event network-config = always;
event user-message = always;
event process-login = always;

7.5 The file /etc/audit/filesets.conf

This file contains file name sets etc used in the default
audit filter configuration file.
The syntax of this file is described in filter.conf(5).

Set of files for which we track read access.
set secret-files = {
 "/etc/shadow",
 "/etc/gshadow",
 "/var/log/audit",
 "/var/log/audit.d",
 "/var/log/audit.d/bin.0",
 "/var/log/audit.d/bin.1",
 "/var/log/audit.d/bin.2",
 "/var/log/audit.d/bin.3",
};